This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cndis | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝒫 𝐴 Cn 𝐽 ) = ( 𝑋 ↑m 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimass | ⊢ ( ◡ 𝑓 “ 𝑥 ) ⊆ dom 𝑓 | |
| 2 | fdm | ⊢ ( 𝑓 : 𝐴 ⟶ 𝑋 → dom 𝑓 = 𝐴 ) | |
| 3 | 2 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑓 : 𝐴 ⟶ 𝑋 ) → dom 𝑓 = 𝐴 ) |
| 4 | 1 3 | sseqtrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑓 : 𝐴 ⟶ 𝑋 ) → ( ◡ 𝑓 “ 𝑥 ) ⊆ 𝐴 ) |
| 5 | elpw2g | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ◡ 𝑓 “ 𝑥 ) ∈ 𝒫 𝐴 ↔ ( ◡ 𝑓 “ 𝑥 ) ⊆ 𝐴 ) ) | |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑓 : 𝐴 ⟶ 𝑋 ) → ( ( ◡ 𝑓 “ 𝑥 ) ∈ 𝒫 𝐴 ↔ ( ◡ 𝑓 “ 𝑥 ) ⊆ 𝐴 ) ) |
| 7 | 4 6 | mpbird | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑓 : 𝐴 ⟶ 𝑋 ) → ( ◡ 𝑓 “ 𝑥 ) ∈ 𝒫 𝐴 ) |
| 8 | 7 | ralrimivw | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑓 : 𝐴 ⟶ 𝑋 ) → ∀ 𝑥 ∈ 𝐽 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝒫 𝐴 ) |
| 9 | 8 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑓 : 𝐴 ⟶ 𝑋 → ∀ 𝑥 ∈ 𝐽 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝒫 𝐴 ) ) |
| 10 | 9 | pm4.71d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑓 : 𝐴 ⟶ 𝑋 ↔ ( 𝑓 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝒫 𝐴 ) ) ) |
| 11 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 12 | id | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) | |
| 13 | elmapg | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑓 ∈ ( 𝑋 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝑋 ) ) | |
| 14 | 11 12 13 | syl2anr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑓 ∈ ( 𝑋 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝑋 ) ) |
| 15 | distopon | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) | |
| 16 | iscn | ⊢ ( ( 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑓 ∈ ( 𝒫 𝐴 Cn 𝐽 ) ↔ ( 𝑓 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝒫 𝐴 ) ) ) | |
| 17 | 15 16 | sylan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑓 ∈ ( 𝒫 𝐴 Cn 𝐽 ) ↔ ( 𝑓 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( ◡ 𝑓 “ 𝑥 ) ∈ 𝒫 𝐴 ) ) ) |
| 18 | 10 14 17 | 3bitr4rd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑓 ∈ ( 𝒫 𝐴 Cn 𝐽 ) ↔ 𝑓 ∈ ( 𝑋 ↑m 𝐴 ) ) ) |
| 19 | 18 | eqrdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝒫 𝐴 Cn 𝐽 ) = ( 𝑋 ↑m 𝐴 ) ) |