This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of a projection map into a topological product. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptpjcn.1 | ⊢ 𝑌 = ∪ 𝐽 | |
| ptpjcn.2 | ⊢ 𝐽 = ( ∏t ‘ 𝐹 ) | ||
| Assertion | ptpjcn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑌 ↦ ( 𝑥 ‘ 𝐼 ) ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝐼 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptpjcn.1 | ⊢ 𝑌 = ∪ 𝐽 | |
| 2 | ptpjcn.2 | ⊢ 𝐽 = ( ∏t ‘ 𝐹 ) | |
| 3 | 2 | ptuni | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐽 ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐽 ) |
| 5 | 1 4 | eqtr4id | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → 𝑌 = X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 6 | 5 | mpteq1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑌 ↦ ( 𝑥 ‘ 𝐼 ) ) = ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑥 ‘ 𝐼 ) ) ) |
| 7 | pttop | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ∏t ‘ 𝐹 ) ∈ Top ) | |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → ( ∏t ‘ 𝐹 ) ∈ Top ) |
| 9 | 2 8 | eqeltrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → 𝐽 ∈ Top ) |
| 10 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐼 ) ∈ Top ) | |
| 11 | 10 | 3adant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐼 ) ∈ Top ) |
| 12 | vex | ⊢ 𝑥 ∈ V | |
| 13 | 12 | elixp | ⊢ ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝑥 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑥 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 14 | 13 | simprbi | ⊢ ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑥 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 15 | fveq2 | ⊢ ( 𝑘 = 𝐼 → ( 𝑥 ‘ 𝑘 ) = ( 𝑥 ‘ 𝐼 ) ) | |
| 16 | fveq2 | ⊢ ( 𝑘 = 𝐼 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝐼 ) ) | |
| 17 | 16 | unieqd | ⊢ ( 𝑘 = 𝐼 → ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝐼 ) ) |
| 18 | 15 17 | eleq12d | ⊢ ( 𝑘 = 𝐼 → ( ( 𝑥 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝑥 ‘ 𝐼 ) ∈ ∪ ( 𝐹 ‘ 𝐼 ) ) ) |
| 19 | 18 | rspcva | ⊢ ( ( 𝐼 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑥 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑥 ‘ 𝐼 ) ∈ ∪ ( 𝐹 ‘ 𝐼 ) ) |
| 20 | 14 19 | sylan2 | ⊢ ( ( 𝐼 ∈ 𝐴 ∧ 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑥 ‘ 𝐼 ) ∈ ∪ ( 𝐹 ‘ 𝐼 ) ) |
| 21 | 20 | 3ad2antl3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) ∧ 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑥 ‘ 𝐼 ) ∈ ∪ ( 𝐹 ‘ 𝐼 ) ) |
| 22 | 21 | fmpttd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑥 ‘ 𝐼 ) ) : X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ⟶ ∪ ( 𝐹 ‘ 𝐼 ) ) |
| 23 | 5 | feq2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → ( ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑥 ‘ 𝐼 ) ) : 𝑌 ⟶ ∪ ( 𝐹 ‘ 𝐼 ) ↔ ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑥 ‘ 𝐼 ) ) : X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ⟶ ∪ ( 𝐹 ‘ 𝐼 ) ) ) |
| 24 | 22 23 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑥 ‘ 𝐼 ) ) : 𝑌 ⟶ ∪ ( 𝐹 ‘ 𝐼 ) ) |
| 25 | eqid | ⊢ { 𝑤 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } = { 𝑤 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| 26 | 25 | ptbas | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → { 𝑤 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ∈ TopBases ) |
| 27 | bastg | ⊢ ( { 𝑤 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ∈ TopBases → { 𝑤 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ⊆ ( topGen ‘ { 𝑤 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → { 𝑤 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ⊆ ( topGen ‘ { 𝑤 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 29 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ Top → 𝐹 Fn 𝐴 ) | |
| 30 | 25 | ptval | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ) → ( ∏t ‘ 𝐹 ) = ( topGen ‘ { 𝑤 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 31 | 2 30 | eqtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ) → 𝐽 = ( topGen ‘ { 𝑤 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 32 | 29 31 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐽 = ( topGen ‘ { 𝑤 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 33 | 28 32 | sseqtrrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → { 𝑤 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ⊆ 𝐽 ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → { 𝑤 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ⊆ 𝐽 ) |
| 35 | eqid | ⊢ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) | |
| 36 | 25 35 | ptpjpre2 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ◡ ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑥 ‘ 𝐼 ) ) “ 𝑢 ) ∈ { 𝑤 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑤 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) |
| 37 | 34 36 | sseldd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝐼 ) ) ) → ( ◡ ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑥 ‘ 𝐼 ) ) “ 𝑢 ) ∈ 𝐽 ) |
| 38 | 37 | expr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ 𝐼 ∈ 𝐴 ) → ( 𝑢 ∈ ( 𝐹 ‘ 𝐼 ) → ( ◡ ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑥 ‘ 𝐼 ) ) “ 𝑢 ) ∈ 𝐽 ) ) |
| 39 | 38 | ralrimiv | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ 𝐼 ∈ 𝐴 ) → ∀ 𝑢 ∈ ( 𝐹 ‘ 𝐼 ) ( ◡ ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑥 ‘ 𝐼 ) ) “ 𝑢 ) ∈ 𝐽 ) |
| 40 | 39 | 3impa | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → ∀ 𝑢 ∈ ( 𝐹 ‘ 𝐼 ) ( ◡ ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑥 ‘ 𝐼 ) ) “ 𝑢 ) ∈ 𝐽 ) |
| 41 | 24 40 | jca | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → ( ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑥 ‘ 𝐼 ) ) : 𝑌 ⟶ ∪ ( 𝐹 ‘ 𝐼 ) ∧ ∀ 𝑢 ∈ ( 𝐹 ‘ 𝐼 ) ( ◡ ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑥 ‘ 𝐼 ) ) “ 𝑢 ) ∈ 𝐽 ) ) |
| 42 | eqid | ⊢ ∪ ( 𝐹 ‘ 𝐼 ) = ∪ ( 𝐹 ‘ 𝐼 ) | |
| 43 | 1 42 | iscn2 | ⊢ ( ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑥 ‘ 𝐼 ) ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝐼 ) ) ↔ ( ( 𝐽 ∈ Top ∧ ( 𝐹 ‘ 𝐼 ) ∈ Top ) ∧ ( ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑥 ‘ 𝐼 ) ) : 𝑌 ⟶ ∪ ( 𝐹 ‘ 𝐼 ) ∧ ∀ 𝑢 ∈ ( 𝐹 ‘ 𝐼 ) ( ◡ ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑥 ‘ 𝐼 ) ) “ 𝑢 ) ∈ 𝐽 ) ) ) |
| 44 | 9 11 41 43 | syl21anbrc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → ( 𝑥 ∈ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ↦ ( 𝑥 ‘ 𝐼 ) ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝐼 ) ) ) |
| 45 | 6 44 | eqeltrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ∧ 𝐼 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑌 ↦ ( 𝑥 ‘ 𝐼 ) ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝐼 ) ) ) |