This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submonoid of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgtgp.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| Assertion | submtmd | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝐻 ∈ TopMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgtgp.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 2 | 1 | submmnd | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝐻 ∈ Mnd ) |
| 3 | 2 | adantl | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝐻 ∈ Mnd ) |
| 4 | tmdtps | ⊢ ( 𝐺 ∈ TopMnd → 𝐺 ∈ TopSp ) | |
| 5 | resstps | ⊢ ( ( 𝐺 ∈ TopSp ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝐺 ↾s 𝑆 ) ∈ TopSp ) | |
| 6 | 4 5 | sylan | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝐺 ↾s 𝑆 ) ∈ TopSp ) |
| 7 | 1 6 | eqeltrid | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝐻 ∈ TopSp ) |
| 8 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 9 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 10 | eqid | ⊢ ( +𝑓 ‘ 𝐻 ) = ( +𝑓 ‘ 𝐻 ) | |
| 11 | 8 9 10 | plusffval | ⊢ ( +𝑓 ‘ 𝐻 ) = ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 12 | 1 | submbas | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 14 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 15 | 1 14 | ressplusg | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 17 | 16 | oveqd | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 18 | 13 13 17 | mpoeq123dv | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐻 ) , 𝑦 ∈ ( Base ‘ 𝐻 ) ↦ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) ) |
| 19 | 11 18 | eqtr4id | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( +𝑓 ‘ 𝐻 ) = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 20 | eqid | ⊢ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) = ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) | |
| 21 | eqid | ⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) | |
| 22 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 23 | 21 22 | tmdtopon | ⊢ ( 𝐺 ∈ TopMnd → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 25 | 22 | submss | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 26 | 25 | adantl | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 27 | eqid | ⊢ ( +𝑓 ‘ 𝐺 ) = ( +𝑓 ‘ 𝐺 ) | |
| 28 | 22 14 27 | plusffval | ⊢ ( +𝑓 ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 29 | 21 27 | tmdcn | ⊢ ( 𝐺 ∈ TopMnd → ( +𝑓 ‘ 𝐺 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 30 | 28 29 | eqeltrrid | ⊢ ( 𝐺 ∈ TopMnd → ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 32 | 20 24 26 20 24 26 31 | cnmpt2res | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ×t ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 33 | 19 32 | eqeltrd | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( +𝑓 ‘ 𝐻 ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ×t ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 34 | 8 10 | mndplusf | ⊢ ( 𝐻 ∈ Mnd → ( +𝑓 ‘ 𝐻 ) : ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ⟶ ( Base ‘ 𝐻 ) ) |
| 35 | frn | ⊢ ( ( +𝑓 ‘ 𝐻 ) : ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ⟶ ( Base ‘ 𝐻 ) → ran ( +𝑓 ‘ 𝐻 ) ⊆ ( Base ‘ 𝐻 ) ) | |
| 36 | 3 34 35 | 3syl | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ran ( +𝑓 ‘ 𝐻 ) ⊆ ( Base ‘ 𝐻 ) ) |
| 37 | 36 13 | sseqtrrd | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ran ( +𝑓 ‘ 𝐻 ) ⊆ 𝑆 ) |
| 38 | cnrest2 | ⊢ ( ( ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ran ( +𝑓 ‘ 𝐻 ) ⊆ 𝑆 ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( ( +𝑓 ‘ 𝐻 ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ×t ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ↔ ( +𝑓 ‘ 𝐻 ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ×t ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) Cn ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) ) ) | |
| 39 | 24 37 26 38 | syl3anc | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( ( +𝑓 ‘ 𝐻 ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ×t ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ↔ ( +𝑓 ‘ 𝐻 ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ×t ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) Cn ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) ) ) |
| 40 | 33 39 | mpbid | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( +𝑓 ‘ 𝐻 ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ×t ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) Cn ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) ) |
| 41 | 1 21 | resstopn | ⊢ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) = ( TopOpen ‘ 𝐻 ) |
| 42 | 10 41 | istmd | ⊢ ( 𝐻 ∈ TopMnd ↔ ( 𝐻 ∈ Mnd ∧ 𝐻 ∈ TopSp ∧ ( +𝑓 ‘ 𝐻 ) ∈ ( ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ×t ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) Cn ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) ) ) |
| 43 | 3 7 40 42 | syl3anbrc | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝐻 ∈ TopMnd ) |