This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinvcl.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | grpinvf | ⊢ ( 𝐺 ∈ Grp → 𝑁 : 𝐵 ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinvcl.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 5 | 1 3 4 | grpinveu | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 6 | riotacl | ⊢ ( ∃! 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) → ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ∈ 𝐵 ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ∈ 𝐵 ) |
| 8 | 1 3 4 2 | grpinvfval | ⊢ 𝑁 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) ) |
| 9 | 7 8 | fmptd | ⊢ ( 𝐺 ∈ Grp → 𝑁 : 𝐵 ⟶ 𝐵 ) |