This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor1 . A compact metric space is complete. This proof works by considering the collection cls ( F " ( ZZ>=n ) ) for each n e. NN , which has the finite intersection property because any finite intersection of upper integer sets is another upper integer set, so any finite intersection of the image closures will contain ( F " ( ZZ>=m ) ) for some m . Thus, by compactness, the intersection contains a point y , which must then be the convergent point of F . (Contributed by Jeff Madsen, 17-Jan-2014) (Revised by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| heibor1.3 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | ||
| heibor1.4 | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | ||
| heibor1.5 | ⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ 𝐷 ) ) | ||
| heibor1.6 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) | ||
| Assertion | heibor1lem | ⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | heibor1.3 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 3 | heibor1.4 | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | |
| 4 | heibor1.5 | ⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ 𝐷 ) ) | |
| 5 | heibor1.6 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) | |
| 6 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 8 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 10 | imassrn | ⊢ ( 𝐹 “ 𝑢 ) ⊆ ran 𝐹 | |
| 11 | 5 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ 𝑋 ) |
| 12 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 13 | 7 12 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 14 | 11 13 | sseqtrd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ∪ 𝐽 ) |
| 15 | 10 14 | sstrid | ⊢ ( 𝜑 → ( 𝐹 “ 𝑢 ) ⊆ ∪ 𝐽 ) |
| 16 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 17 | 16 | clscld | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ 𝑢 ) ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 18 | 9 15 17 | syl2anc | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 19 | eleq1a | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∈ ( Clsd ‘ 𝐽 ) → ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑘 ∈ ( Clsd ‘ 𝐽 ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑘 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 21 | 20 | rexlimdvw | ⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑘 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 22 | 21 | abssdv | ⊢ ( 𝜑 → { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ⊆ ( Clsd ‘ 𝐽 ) ) |
| 23 | fvex | ⊢ ( Clsd ‘ 𝐽 ) ∈ V | |
| 24 | 23 | elpw2 | ⊢ ( { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ 𝒫 ( Clsd ‘ 𝐽 ) ↔ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ⊆ ( Clsd ‘ 𝐽 ) ) |
| 25 | 22 24 | sylibr | ⊢ ( 𝜑 → { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ 𝒫 ( Clsd ‘ 𝐽 ) ) |
| 26 | elin | ⊢ ( 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ↔ ( 𝑟 ∈ 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∧ 𝑟 ∈ Fin ) ) | |
| 27 | velpw | ⊢ ( 𝑟 ∈ 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ↔ 𝑟 ⊆ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) | |
| 28 | ssabral | ⊢ ( 𝑟 ⊆ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ↔ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) | |
| 29 | 27 28 | bitri | ⊢ ( 𝑟 ∈ 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ↔ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 30 | 29 | anbi1i | ⊢ ( ( 𝑟 ∈ 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∧ 𝑟 ∈ Fin ) ↔ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) |
| 31 | 26 30 | bitri | ⊢ ( 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ↔ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) |
| 32 | raleq | ⊢ ( 𝑚 = ∅ → ( ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∀ 𝑘 ∈ ∅ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) | |
| 33 | 32 | anbi2d | ⊢ ( 𝑚 = ∅ → ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ ∅ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) ) |
| 34 | inteq | ⊢ ( 𝑚 = ∅ → ∩ 𝑚 = ∩ ∅ ) | |
| 35 | 34 | sseq2d | ⊢ ( 𝑚 = ∅ → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ) ) |
| 36 | 35 | rexbidv | ⊢ ( 𝑚 = ∅ → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ) ) |
| 37 | 33 36 | imbi12d | ⊢ ( 𝑚 = ∅ → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ∅ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ) ) ) |
| 38 | raleq | ⊢ ( 𝑚 = 𝑦 → ( ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) | |
| 39 | 38 | anbi2d | ⊢ ( 𝑚 = 𝑦 → ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) ) |
| 40 | inteq | ⊢ ( 𝑚 = 𝑦 → ∩ 𝑚 = ∩ 𝑦 ) | |
| 41 | 40 | sseq2d | ⊢ ( 𝑚 = 𝑦 → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ) |
| 42 | 41 | rexbidv | ⊢ ( 𝑚 = 𝑦 → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ) |
| 43 | 39 42 | imbi12d | ⊢ ( 𝑚 = 𝑦 → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ) ) |
| 44 | raleq | ⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) | |
| 45 | 44 | anbi2d | ⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) ) |
| 46 | inteq | ⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ∩ 𝑚 = ∩ ( 𝑦 ∪ { 𝑛 } ) ) | |
| 47 | 46 | sseq2d | ⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 48 | 47 | rexbidv | ⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 49 | 45 48 | imbi12d | ⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
| 50 | raleq | ⊢ ( 𝑚 = 𝑟 → ( ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) | |
| 51 | 50 | anbi2d | ⊢ ( 𝑚 = 𝑟 → ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) ) |
| 52 | inteq | ⊢ ( 𝑚 = 𝑟 → ∩ 𝑚 = ∩ 𝑟 ) | |
| 53 | 52 | sseq2d | ⊢ ( 𝑚 = 𝑟 → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) ) |
| 54 | 53 | rexbidv | ⊢ ( 𝑚 = 𝑟 → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) ) |
| 55 | 51 54 | imbi12d | ⊢ ( 𝑚 = 𝑟 → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) ) ) |
| 56 | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ | |
| 57 | ffn | ⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) | |
| 58 | 56 57 | ax-mp | ⊢ ℤ≥ Fn ℤ |
| 59 | 0z | ⊢ 0 ∈ ℤ | |
| 60 | fnfvelrn | ⊢ ( ( ℤ≥ Fn ℤ ∧ 0 ∈ ℤ ) → ( ℤ≥ ‘ 0 ) ∈ ran ℤ≥ ) | |
| 61 | 58 59 60 | mp2an | ⊢ ( ℤ≥ ‘ 0 ) ∈ ran ℤ≥ |
| 62 | ssv | ⊢ ( 𝐹 “ ( ℤ≥ ‘ 0 ) ) ⊆ V | |
| 63 | int0 | ⊢ ∩ ∅ = V | |
| 64 | 62 63 | sseqtrri | ⊢ ( 𝐹 “ ( ℤ≥ ‘ 0 ) ) ⊆ ∩ ∅ |
| 65 | imaeq2 | ⊢ ( 𝑘 = ( ℤ≥ ‘ 0 ) → ( 𝐹 “ 𝑘 ) = ( 𝐹 “ ( ℤ≥ ‘ 0 ) ) ) | |
| 66 | 65 | sseq1d | ⊢ ( 𝑘 = ( ℤ≥ ‘ 0 ) → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ↔ ( 𝐹 “ ( ℤ≥ ‘ 0 ) ) ⊆ ∩ ∅ ) ) |
| 67 | 66 | rspcev | ⊢ ( ( ( ℤ≥ ‘ 0 ) ∈ ran ℤ≥ ∧ ( 𝐹 “ ( ℤ≥ ‘ 0 ) ) ⊆ ∩ ∅ ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ) |
| 68 | 61 64 67 | mp2an | ⊢ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ |
| 69 | 68 | a1i | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ∅ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ) |
| 70 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑛 } ) | |
| 71 | ssralv | ⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑛 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) | |
| 72 | 70 71 | ax-mp | ⊢ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 73 | 72 | anim2i | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
| 74 | 73 | imim1i | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ) |
| 75 | ssun2 | ⊢ { 𝑛 } ⊆ ( 𝑦 ∪ { 𝑛 } ) | |
| 76 | ssralv | ⊢ ( { 𝑛 } ⊆ ( 𝑦 ∪ { 𝑛 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ∀ 𝑘 ∈ { 𝑛 } ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) | |
| 77 | 75 76 | ax-mp | ⊢ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ∀ 𝑘 ∈ { 𝑛 } ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 78 | vex | ⊢ 𝑛 ∈ V | |
| 79 | eqeq1 | ⊢ ( 𝑘 = 𝑛 → ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) | |
| 80 | 79 | rexbidv | ⊢ ( 𝑘 = 𝑛 → ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
| 81 | 78 80 | ralsn | ⊢ ( ∀ 𝑘 ∈ { 𝑛 } ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 82 | 77 81 | sylib | ⊢ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 83 | uzin2 | ⊢ ( ( 𝑢 ∈ ran ℤ≥ ∧ 𝑘 ∈ ran ℤ≥ ) → ( 𝑢 ∩ 𝑘 ) ∈ ran ℤ≥ ) | |
| 84 | 10 11 | sstrid | ⊢ ( 𝜑 → ( 𝐹 “ 𝑢 ) ⊆ 𝑋 ) |
| 85 | 84 13 | sseqtrd | ⊢ ( 𝜑 → ( 𝐹 “ 𝑢 ) ⊆ ∪ 𝐽 ) |
| 86 | 16 | sscls | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ 𝑢 ) ⊆ ∪ 𝐽 ) → ( 𝐹 “ 𝑢 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 87 | 9 85 86 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 “ 𝑢 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 88 | sseq2 | ⊢ ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( ( 𝐹 “ 𝑢 ) ⊆ 𝑛 ↔ ( 𝐹 “ 𝑢 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) | |
| 89 | 87 88 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( 𝐹 “ 𝑢 ) ⊆ 𝑛 ) ) |
| 90 | inss2 | ⊢ ( 𝑢 ∩ 𝑘 ) ⊆ 𝑘 | |
| 91 | inss1 | ⊢ ( 𝑢 ∩ 𝑘 ) ⊆ 𝑢 | |
| 92 | imass2 | ⊢ ( ( 𝑢 ∩ 𝑘 ) ⊆ 𝑘 → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑘 ) ) | |
| 93 | imass2 | ⊢ ( ( 𝑢 ∩ 𝑘 ) ⊆ 𝑢 → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑢 ) ) | |
| 94 | 92 93 | anim12i | ⊢ ( ( ( 𝑢 ∩ 𝑘 ) ⊆ 𝑘 ∧ ( 𝑢 ∩ 𝑘 ) ⊆ 𝑢 ) → ( ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑘 ) ∧ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑢 ) ) ) |
| 95 | ssin | ⊢ ( ( ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑘 ) ∧ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑢 ) ) ↔ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( ( 𝐹 “ 𝑘 ) ∩ ( 𝐹 “ 𝑢 ) ) ) | |
| 96 | 94 95 | sylib | ⊢ ( ( ( 𝑢 ∩ 𝑘 ) ⊆ 𝑘 ∧ ( 𝑢 ∩ 𝑘 ) ⊆ 𝑢 ) → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( ( 𝐹 “ 𝑘 ) ∩ ( 𝐹 “ 𝑢 ) ) ) |
| 97 | 90 91 96 | mp2an | ⊢ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( ( 𝐹 “ 𝑘 ) ∩ ( 𝐹 “ 𝑢 ) ) |
| 98 | ss2in | ⊢ ( ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ∧ ( 𝐹 “ 𝑢 ) ⊆ 𝑛 ) → ( ( 𝐹 “ 𝑘 ) ∩ ( 𝐹 “ 𝑢 ) ) ⊆ ( ∩ 𝑦 ∩ 𝑛 ) ) | |
| 99 | 97 98 | sstrid | ⊢ ( ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ∧ ( 𝐹 “ 𝑢 ) ⊆ 𝑛 ) → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( ∩ 𝑦 ∩ 𝑛 ) ) |
| 100 | 78 | intunsn | ⊢ ∩ ( 𝑦 ∪ { 𝑛 } ) = ( ∩ 𝑦 ∩ 𝑛 ) |
| 101 | 99 100 | sseqtrrdi | ⊢ ( ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ∧ ( 𝐹 “ 𝑢 ) ⊆ 𝑛 ) → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) |
| 102 | 101 | expcom | ⊢ ( ( 𝐹 “ 𝑢 ) ⊆ 𝑛 → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 103 | 89 102 | syl6 | ⊢ ( 𝜑 → ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
| 104 | 103 | impd | ⊢ ( 𝜑 → ( ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 105 | imaeq2 | ⊢ ( 𝑚 = ( 𝑢 ∩ 𝑘 ) → ( 𝐹 “ 𝑚 ) = ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ) | |
| 106 | 105 | sseq1d | ⊢ ( 𝑚 = ( 𝑢 ∩ 𝑘 ) → ( ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ↔ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 107 | 106 | rspcev | ⊢ ( ( ( 𝑢 ∩ 𝑘 ) ∈ ran ℤ≥ ∧ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) |
| 108 | 107 | expcom | ⊢ ( ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) → ( ( 𝑢 ∩ 𝑘 ) ∈ ran ℤ≥ → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 109 | 104 108 | syl6 | ⊢ ( 𝜑 → ( ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ( ( 𝑢 ∩ 𝑘 ) ∈ ran ℤ≥ → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
| 110 | 109 | com23 | ⊢ ( 𝜑 → ( ( 𝑢 ∩ 𝑘 ) ∈ ran ℤ≥ → ( ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
| 111 | 83 110 | syl5 | ⊢ ( 𝜑 → ( ( 𝑢 ∈ ran ℤ≥ ∧ 𝑘 ∈ ran ℤ≥ ) → ( ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
| 112 | 111 | rexlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ran ℤ≥ ∃ 𝑘 ∈ ran ℤ≥ ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 113 | reeanv | ⊢ ( ∃ 𝑢 ∈ ran ℤ≥ ∃ 𝑘 ∈ ran ℤ≥ ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ↔ ( ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ) | |
| 114 | imaeq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑘 ) ) | |
| 115 | 114 | sseq1d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ↔ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 116 | 115 | cbvrexvw | ⊢ ( ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ↔ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) |
| 117 | 112 113 116 | 3imtr3g | ⊢ ( 𝜑 → ( ( ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 118 | 117 | expd | ⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
| 119 | 82 118 | syl5 | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
| 120 | 119 | imp | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 121 | 74 120 | sylcom | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 122 | 121 | a1i | ⊢ ( 𝑦 ∈ Fin → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
| 123 | 37 43 49 55 69 122 | findcard2 | ⊢ ( 𝑟 ∈ Fin → ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) ) |
| 124 | 123 | com12 | ⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ( 𝑟 ∈ Fin → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) ) |
| 125 | 124 | impr | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) |
| 126 | 5 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℕ ) |
| 127 | inss1 | ⊢ ( 𝑘 ∩ ℕ ) ⊆ 𝑘 | |
| 128 | imass2 | ⊢ ( ( 𝑘 ∩ ℕ ) ⊆ 𝑘 → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ⊆ ( 𝐹 “ 𝑘 ) ) | |
| 129 | 127 128 | ax-mp | ⊢ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ⊆ ( 𝐹 “ 𝑘 ) |
| 130 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 131 | 1z | ⊢ 1 ∈ ℤ | |
| 132 | fnfvelrn | ⊢ ( ( ℤ≥ Fn ℤ ∧ 1 ∈ ℤ ) → ( ℤ≥ ‘ 1 ) ∈ ran ℤ≥ ) | |
| 133 | 58 131 132 | mp2an | ⊢ ( ℤ≥ ‘ 1 ) ∈ ran ℤ≥ |
| 134 | 130 133 | eqeltri | ⊢ ℕ ∈ ran ℤ≥ |
| 135 | uzin2 | ⊢ ( ( 𝑘 ∈ ran ℤ≥ ∧ ℕ ∈ ran ℤ≥ ) → ( 𝑘 ∩ ℕ ) ∈ ran ℤ≥ ) | |
| 136 | 134 135 | mpan2 | ⊢ ( 𝑘 ∈ ran ℤ≥ → ( 𝑘 ∩ ℕ ) ∈ ran ℤ≥ ) |
| 137 | uzn0 | ⊢ ( ( 𝑘 ∩ ℕ ) ∈ ran ℤ≥ → ( 𝑘 ∩ ℕ ) ≠ ∅ ) | |
| 138 | 136 137 | syl | ⊢ ( 𝑘 ∈ ran ℤ≥ → ( 𝑘 ∩ ℕ ) ≠ ∅ ) |
| 139 | n0 | ⊢ ( ( 𝑘 ∩ ℕ ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( 𝑘 ∩ ℕ ) ) | |
| 140 | 138 139 | sylib | ⊢ ( 𝑘 ∈ ran ℤ≥ → ∃ 𝑦 𝑦 ∈ ( 𝑘 ∩ ℕ ) ) |
| 141 | fnfun | ⊢ ( 𝐹 Fn ℕ → Fun 𝐹 ) | |
| 142 | inss2 | ⊢ ( 𝑘 ∩ ℕ ) ⊆ ℕ | |
| 143 | fndm | ⊢ ( 𝐹 Fn ℕ → dom 𝐹 = ℕ ) | |
| 144 | 142 143 | sseqtrrid | ⊢ ( 𝐹 Fn ℕ → ( 𝑘 ∩ ℕ ) ⊆ dom 𝐹 ) |
| 145 | funfvima2 | ⊢ ( ( Fun 𝐹 ∧ ( 𝑘 ∩ ℕ ) ⊆ dom 𝐹 ) → ( 𝑦 ∈ ( 𝑘 ∩ ℕ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ) ) | |
| 146 | 141 144 145 | syl2anc | ⊢ ( 𝐹 Fn ℕ → ( 𝑦 ∈ ( 𝑘 ∩ ℕ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ) ) |
| 147 | ne0i | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) | |
| 148 | 146 147 | syl6 | ⊢ ( 𝐹 Fn ℕ → ( 𝑦 ∈ ( 𝑘 ∩ ℕ ) → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) ) |
| 149 | 148 | exlimdv | ⊢ ( 𝐹 Fn ℕ → ( ∃ 𝑦 𝑦 ∈ ( 𝑘 ∩ ℕ ) → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) ) |
| 150 | 140 149 | syl5 | ⊢ ( 𝐹 Fn ℕ → ( 𝑘 ∈ ran ℤ≥ → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) ) |
| 151 | 150 | imp | ⊢ ( ( 𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ≥ ) → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) |
| 152 | ssn0 | ⊢ ( ( ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ⊆ ( 𝐹 “ 𝑘 ) ∧ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) → ( 𝐹 “ 𝑘 ) ≠ ∅ ) | |
| 153 | 129 151 152 | sylancr | ⊢ ( ( 𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ≥ ) → ( 𝐹 “ 𝑘 ) ≠ ∅ ) |
| 154 | ssn0 | ⊢ ( ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ∧ ( 𝐹 “ 𝑘 ) ≠ ∅ ) → ∩ 𝑟 ≠ ∅ ) | |
| 155 | 154 | expcom | ⊢ ( ( 𝐹 “ 𝑘 ) ≠ ∅ → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 → ∩ 𝑟 ≠ ∅ ) ) |
| 156 | 153 155 | syl | ⊢ ( ( 𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ≥ ) → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 → ∩ 𝑟 ≠ ∅ ) ) |
| 157 | 156 | rexlimdva | ⊢ ( 𝐹 Fn ℕ → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 → ∩ 𝑟 ≠ ∅ ) ) |
| 158 | 126 157 | syl | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 → ∩ 𝑟 ≠ ∅ ) ) |
| 159 | 158 | adantr | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 → ∩ 𝑟 ≠ ∅ ) ) |
| 160 | 125 159 | mpd | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ∩ 𝑟 ≠ ∅ ) |
| 161 | 160 | necomd | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ∅ ≠ ∩ 𝑟 ) |
| 162 | 161 | neneqd | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ¬ ∅ = ∩ 𝑟 ) |
| 163 | 31 162 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ) → ¬ ∅ = ∩ 𝑟 ) |
| 164 | 163 | nrexdv | ⊢ ( 𝜑 → ¬ ∃ 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ∅ = ∩ 𝑟 ) |
| 165 | 0ex | ⊢ ∅ ∈ V | |
| 166 | zex | ⊢ ℤ ∈ V | |
| 167 | 166 | pwex | ⊢ 𝒫 ℤ ∈ V |
| 168 | frn | ⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ran ℤ≥ ⊆ 𝒫 ℤ ) | |
| 169 | 56 168 | ax-mp | ⊢ ran ℤ≥ ⊆ 𝒫 ℤ |
| 170 | 167 169 | ssexi | ⊢ ran ℤ≥ ∈ V |
| 171 | 170 | abrexex | ⊢ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ V |
| 172 | elfi | ⊢ ( ( ∅ ∈ V ∧ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ V ) → ( ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ↔ ∃ 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ∅ = ∩ 𝑟 ) ) | |
| 173 | 165 171 172 | mp2an | ⊢ ( ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ↔ ∃ 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ∅ = ∩ 𝑟 ) |
| 174 | 164 173 | sylnibr | ⊢ ( 𝜑 → ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) |
| 175 | cmptop | ⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) | |
| 176 | cmpfi | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Comp ↔ ∀ 𝑚 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → ∩ 𝑚 ≠ ∅ ) ) ) | |
| 177 | 175 176 | syl | ⊢ ( 𝐽 ∈ Comp → ( 𝐽 ∈ Comp ↔ ∀ 𝑚 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → ∩ 𝑚 ≠ ∅ ) ) ) |
| 178 | 177 | ibi | ⊢ ( 𝐽 ∈ Comp → ∀ 𝑚 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → ∩ 𝑚 ≠ ∅ ) ) |
| 179 | fveq2 | ⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( fi ‘ 𝑚 ) = ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) | |
| 180 | 179 | eleq2d | ⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( ∅ ∈ ( fi ‘ 𝑚 ) ↔ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) ) |
| 181 | 180 | notbid | ⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) ↔ ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) ) |
| 182 | inteq | ⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ∩ 𝑚 = ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) | |
| 183 | 182 | neeq1d | ⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( ∩ 𝑚 ≠ ∅ ↔ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ≠ ∅ ) ) |
| 184 | n0 | ⊢ ( ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) | |
| 185 | 183 184 | bitrdi | ⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( ∩ 𝑚 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) |
| 186 | 181 185 | imbi12d | ⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → ∩ 𝑚 ≠ ∅ ) ↔ ( ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) ) |
| 187 | 186 | rspccv | ⊢ ( ∀ 𝑚 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → ∩ 𝑚 ≠ ∅ ) → ( { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ 𝒫 ( Clsd ‘ 𝐽 ) → ( ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) ) |
| 188 | 178 187 | syl | ⊢ ( 𝐽 ∈ Comp → ( { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ 𝒫 ( Clsd ‘ 𝐽 ) → ( ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) ) |
| 189 | 3 25 174 188 | syl3c | ⊢ ( 𝜑 → ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) |
| 190 | lmrel | ⊢ Rel ( ⇝𝑡 ‘ 𝐽 ) | |
| 191 | r19.23v | ⊢ ( ∀ 𝑢 ∈ ran ℤ≥ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ↔ ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ) | |
| 192 | 191 | albii | ⊢ ( ∀ 𝑘 ∀ 𝑢 ∈ ran ℤ≥ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ↔ ∀ 𝑘 ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ) |
| 193 | fvex | ⊢ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∈ V | |
| 194 | eleq2 | ⊢ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( 𝑦 ∈ 𝑘 ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) | |
| 195 | 193 194 | ceqsalv | ⊢ ( ∀ 𝑘 ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 196 | 195 | ralbii | ⊢ ( ∀ 𝑢 ∈ ran ℤ≥ ∀ 𝑘 ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ↔ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 197 | ralcom4 | ⊢ ( ∀ 𝑢 ∈ ran ℤ≥ ∀ 𝑘 ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ↔ ∀ 𝑘 ∀ 𝑢 ∈ ran ℤ≥ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ) | |
| 198 | 196 197 | bitr3i | ⊢ ( ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∀ 𝑘 ∀ 𝑢 ∈ ran ℤ≥ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ) |
| 199 | vex | ⊢ 𝑦 ∈ V | |
| 200 | 199 | elintab | ⊢ ( 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ↔ ∀ 𝑘 ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ) |
| 201 | 192 198 200 | 3bitr4i | ⊢ ( ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) |
| 202 | eqid | ⊢ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) | |
| 203 | imaeq2 | ⊢ ( 𝑢 = ℕ → ( 𝐹 “ 𝑢 ) = ( 𝐹 “ ℕ ) ) | |
| 204 | 203 | fveq2d | ⊢ ( 𝑢 = ℕ → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ) |
| 205 | 204 | rspceeqv | ⊢ ( ( ℕ ∈ ran ℤ≥ ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ) → ∃ 𝑢 ∈ ran ℤ≥ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 206 | 134 202 205 | mp2an | ⊢ ∃ 𝑢 ∈ ran ℤ≥ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) |
| 207 | fvex | ⊢ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ∈ V | |
| 208 | eqeq1 | ⊢ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) → ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) | |
| 209 | 208 | rexbidv | ⊢ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) → ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∃ 𝑢 ∈ ran ℤ≥ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
| 210 | 207 209 | elab | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ∈ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ↔ ∃ 𝑢 ∈ ran ℤ≥ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
| 211 | 206 210 | mpbir | ⊢ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ∈ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } |
| 212 | intss1 | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ∈ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ) | |
| 213 | 211 212 | ax-mp | ⊢ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) |
| 214 | imassrn | ⊢ ( 𝐹 “ ℕ ) ⊆ ran 𝐹 | |
| 215 | 214 14 | sstrid | ⊢ ( 𝜑 → ( 𝐹 “ ℕ ) ⊆ ∪ 𝐽 ) |
| 216 | 16 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ ℕ ) ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ⊆ ∪ 𝐽 ) |
| 217 | 9 215 216 | syl2anc | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ⊆ ∪ 𝐽 ) |
| 218 | 217 13 | sseqtrrd | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ⊆ 𝑋 ) |
| 219 | 213 218 | sstrid | ⊢ ( 𝜑 → ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ⊆ 𝑋 ) |
| 220 | 219 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → 𝑦 ∈ 𝑋 ) |
| 221 | 201 220 | sylan2b | ⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → 𝑦 ∈ 𝑋 ) |
| 222 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 223 | 130 7 222 | iscau3 | ⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) ) ) ) |
| 224 | 4 223 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) ) ) |
| 225 | 224 | simprd | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) ) |
| 226 | simp3 | ⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) | |
| 227 | 226 | ralimi | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
| 228 | 227 | reximi | ⊢ ( ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) → ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
| 229 | 228 | ralimi | ⊢ ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
| 230 | 225 229 | syl | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
| 231 | 230 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
| 232 | rphalfcl | ⊢ ( 𝑟 ∈ ℝ+ → ( 𝑟 / 2 ) ∈ ℝ+ ) | |
| 233 | breq2 | ⊢ ( 𝑦 = ( 𝑟 / 2 ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ) ) | |
| 234 | 233 | 2ralbidv | ⊢ ( 𝑦 = ( 𝑟 / 2 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ) ) |
| 235 | 234 | rexbidv | ⊢ ( 𝑦 = ( 𝑟 / 2 ) → ( ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ↔ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ) ) |
| 236 | 235 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ∧ ( 𝑟 / 2 ) ∈ ℝ+ ) → ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ) |
| 237 | 231 232 236 | syl2an | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ) |
| 238 | 5 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 239 | 238 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → Fun 𝐹 ) |
| 240 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → 𝐽 ∈ Top ) |
| 241 | imassrn | ⊢ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ⊆ ran 𝐹 | |
| 242 | 241 14 | sstrid | ⊢ ( 𝜑 → ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ⊆ ∪ 𝐽 ) |
| 243 | 242 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ⊆ ∪ 𝐽 ) |
| 244 | nnz | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) | |
| 245 | fnfvelrn | ⊢ ( ( ℤ≥ Fn ℤ ∧ 𝑚 ∈ ℤ ) → ( ℤ≥ ‘ 𝑚 ) ∈ ran ℤ≥ ) | |
| 246 | 58 244 245 | sylancr | ⊢ ( 𝑚 ∈ ℕ → ( ℤ≥ ‘ 𝑚 ) ∈ ran ℤ≥ ) |
| 247 | 246 | ad2antll | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ℤ≥ ‘ 𝑚 ) ∈ ran ℤ≥ ) |
| 248 | simplr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) | |
| 249 | imaeq2 | ⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑚 ) → ( 𝐹 “ 𝑢 ) = ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) | |
| 250 | 249 | fveq2d | ⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑚 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) |
| 251 | 250 | eleq2d | ⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑚 ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) ) |
| 252 | 251 | rspcv | ⊢ ( ( ℤ≥ ‘ 𝑚 ) ∈ ran ℤ≥ → ( ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) ) |
| 253 | 247 248 252 | sylc | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) |
| 254 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 255 | 221 | adantr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → 𝑦 ∈ 𝑋 ) |
| 256 | 232 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 257 | 256 | rpxrd | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( 𝑟 / 2 ) ∈ ℝ* ) |
| 258 | 1 | blopn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑟 / 2 ) ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽 ) |
| 259 | 254 255 257 258 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽 ) |
| 260 | blcntr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑟 / 2 ) ∈ ℝ+ ) → 𝑦 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) | |
| 261 | 254 255 256 260 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → 𝑦 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 262 | 16 | clsndisj | ⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ⊆ ∪ 𝐽 ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) ∧ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) → ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ≠ ∅ ) |
| 263 | 240 243 253 259 261 262 | syl32anc | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ≠ ∅ ) |
| 264 | n0 | ⊢ ( ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ≠ ∅ ↔ ∃ 𝑛 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) | |
| 265 | inss2 | ⊢ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ⊆ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) | |
| 266 | 265 | sseli | ⊢ ( 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) → 𝑛 ∈ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) |
| 267 | fvelima | ⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) = 𝑛 ) | |
| 268 | 266 267 | sylan2 | ⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) = 𝑛 ) |
| 269 | inss1 | ⊢ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) | |
| 270 | 269 | sseli | ⊢ ( 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) → 𝑛 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 271 | 270 | adantl | ⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) → 𝑛 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 272 | eleq1a | ⊢ ( 𝑛 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) → ( ( 𝐹 ‘ 𝑘 ) = 𝑛 → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) | |
| 273 | 271 272 | syl | ⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) → ( ( 𝐹 ‘ 𝑘 ) = 𝑛 → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 274 | 273 | reximdv | ⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) = 𝑛 → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 275 | 268 274 | mpd | ⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 276 | 275 | ex | ⊢ ( Fun 𝐹 → ( 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 277 | 276 | exlimdv | ⊢ ( Fun 𝐹 → ( ∃ 𝑛 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 278 | 264 277 | biimtrid | ⊢ ( Fun 𝐹 → ( ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ≠ ∅ → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 279 | 239 263 278 | sylc | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 280 | r19.29 | ⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) | |
| 281 | uznnssnn | ⊢ ( 𝑚 ∈ ℕ → ( ℤ≥ ‘ 𝑚 ) ⊆ ℕ ) | |
| 282 | 281 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ℤ≥ ‘ 𝑚 ) ⊆ ℕ ) |
| 283 | simprlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) | |
| 284 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 285 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑟 ∈ ℝ+ ) | |
| 286 | 285 232 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 287 | 286 | rpxrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝑟 / 2 ) ∈ ℝ* ) |
| 288 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑦 ∈ 𝑋 ) | |
| 289 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝐹 : ℕ ⟶ 𝑋 ) |
| 290 | eluznn | ⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝑘 ∈ ℕ ) | |
| 291 | 290 | ad2ant2lr | ⊢ ( ( ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 292 | 291 | ad2ant2lr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑘 ∈ ℕ ) |
| 293 | 289 292 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 294 | elbl3 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑟 / 2 ) ∈ ℝ* ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) ) | |
| 295 | 284 287 288 293 294 | syl22anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) ) |
| 296 | 283 295 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) |
| 297 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 298 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) | |
| 299 | eluznn | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑛 ∈ ℕ ) | |
| 300 | 292 298 299 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑛 ∈ ℕ ) |
| 301 | 289 300 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
| 302 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) | |
| 303 | 297 293 301 302 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 304 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ∈ ℝ ) | |
| 305 | 297 293 288 304 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ∈ ℝ ) |
| 306 | 286 | rpred | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝑟 / 2 ) ∈ ℝ ) |
| 307 | lt2add | ⊢ ( ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ∈ ℝ ) ∧ ( ( 𝑟 / 2 ) ∈ ℝ ∧ ( 𝑟 / 2 ) ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) ) ) | |
| 308 | 303 305 306 306 307 | syl22anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) ) ) |
| 309 | 296 308 | mpan2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) ) ) |
| 310 | 285 | rpcnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑟 ∈ ℂ ) |
| 311 | 310 | 2halvesd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) = 𝑟 ) |
| 312 | 311 | breq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) ↔ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < 𝑟 ) ) |
| 313 | 309 312 | sylibd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < 𝑟 ) ) |
| 314 | mettri2 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ) | |
| 315 | 297 293 301 288 314 | syl13anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ) |
| 316 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ∈ ℝ ) | |
| 317 | 297 301 288 316 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ∈ ℝ ) |
| 318 | 303 305 | readdcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ∈ ℝ ) |
| 319 | 285 | rpred | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑟 ∈ ℝ ) |
| 320 | lelttr | ⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ∧ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < 𝑟 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) | |
| 321 | 317 318 319 320 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ∧ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < 𝑟 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 322 | 315 321 | mpand | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < 𝑟 → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 323 | 313 322 | syld | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 324 | 323 | anassrs | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 325 | 324 | ralimdva | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 326 | 325 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) ) |
| 327 | 326 | com23 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) ) |
| 328 | 327 | impd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 329 | 328 | reximdva | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 330 | ssrexv | ⊢ ( ( ℤ≥ ‘ 𝑚 ) ⊆ ℕ → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) | |
| 331 | 282 329 330 | sylsyld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 332 | 221 331 | syldanl | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 333 | 280 332 | syl5 | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 334 | 279 333 | mpan2d | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 335 | 334 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 336 | 335 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
| 337 | 237 336 | mpd | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) |
| 338 | 337 | ralrimiva | ⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) |
| 339 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 340 | 1 7 130 222 339 5 | lmmbrf | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ ( 𝑦 ∈ 𝑋 ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) ) |
| 341 | 340 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ ( 𝑦 ∈ 𝑋 ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) ) |
| 342 | 221 338 341 | mpbir2and | ⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) |
| 343 | 201 342 | sylan2br | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) |
| 344 | releldm | ⊢ ( ( Rel ( ⇝𝑡 ‘ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) | |
| 345 | 190 343 344 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 346 | 189 345 | exlimddv | ⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |