This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Specific properties of an element of ( fiB ) . (Contributed by FL, 27-Apr-2008) (Revised by Mario Carneiro, 24-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 = ∩ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fival | ⊢ ( 𝐵 ∈ 𝑊 → ( fi ‘ 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑦 = ∩ 𝑥 } ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑦 = ∩ 𝑥 } ) ) |
| 3 | eqeq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 = ∩ 𝑥 ↔ 𝐴 = ∩ 𝑥 ) ) | |
| 4 | 3 | rexbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑦 = ∩ 𝑥 ↔ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 = ∩ 𝑥 ) ) |
| 5 | 4 | elabg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑦 = ∩ 𝑥 } ↔ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 = ∩ 𝑥 ) ) |
| 6 | 2 5 | sylan9bbr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 = ∩ 𝑥 ) ) |