This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor1 . A compact metric space is complete. This proof works by considering the collection cls ( F " ( ZZ>=n ) ) for each n e. NN , which has the finite intersection property because any finite intersection of upper integer sets is another upper integer set, so any finite intersection of the image closures will contain ( F " ( ZZ>=m ) ) for some m . Thus, by compactness, the intersection contains a point y , which must then be the convergent point of F . (Contributed by Jeff Madsen, 17-Jan-2014) (Revised by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | |- J = ( MetOpen ` D ) |
|
| heibor1.3 | |- ( ph -> D e. ( Met ` X ) ) |
||
| heibor1.4 | |- ( ph -> J e. Comp ) |
||
| heibor1.5 | |- ( ph -> F e. ( Cau ` D ) ) |
||
| heibor1.6 | |- ( ph -> F : NN --> X ) |
||
| Assertion | heibor1lem | |- ( ph -> F e. dom ( ~~>t ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | |- J = ( MetOpen ` D ) |
|
| 2 | heibor1.3 | |- ( ph -> D e. ( Met ` X ) ) |
|
| 3 | heibor1.4 | |- ( ph -> J e. Comp ) |
|
| 4 | heibor1.5 | |- ( ph -> F e. ( Cau ` D ) ) |
|
| 5 | heibor1.6 | |- ( ph -> F : NN --> X ) |
|
| 6 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 7 | 2 6 | syl | |- ( ph -> D e. ( *Met ` X ) ) |
| 8 | 1 | mopntop | |- ( D e. ( *Met ` X ) -> J e. Top ) |
| 9 | 7 8 | syl | |- ( ph -> J e. Top ) |
| 10 | imassrn | |- ( F " u ) C_ ran F |
|
| 11 | 5 | frnd | |- ( ph -> ran F C_ X ) |
| 12 | 1 | mopnuni | |- ( D e. ( *Met ` X ) -> X = U. J ) |
| 13 | 7 12 | syl | |- ( ph -> X = U. J ) |
| 14 | 11 13 | sseqtrd | |- ( ph -> ran F C_ U. J ) |
| 15 | 10 14 | sstrid | |- ( ph -> ( F " u ) C_ U. J ) |
| 16 | eqid | |- U. J = U. J |
|
| 17 | 16 | clscld | |- ( ( J e. Top /\ ( F " u ) C_ U. J ) -> ( ( cls ` J ) ` ( F " u ) ) e. ( Clsd ` J ) ) |
| 18 | 9 15 17 | syl2anc | |- ( ph -> ( ( cls ` J ) ` ( F " u ) ) e. ( Clsd ` J ) ) |
| 19 | eleq1a | |- ( ( ( cls ` J ) ` ( F " u ) ) e. ( Clsd ` J ) -> ( k = ( ( cls ` J ) ` ( F " u ) ) -> k e. ( Clsd ` J ) ) ) |
|
| 20 | 18 19 | syl | |- ( ph -> ( k = ( ( cls ` J ) ` ( F " u ) ) -> k e. ( Clsd ` J ) ) ) |
| 21 | 20 | rexlimdvw | |- ( ph -> ( E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> k e. ( Clsd ` J ) ) ) |
| 22 | 21 | abssdv | |- ( ph -> { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } C_ ( Clsd ` J ) ) |
| 23 | fvex | |- ( Clsd ` J ) e. _V |
|
| 24 | 23 | elpw2 | |- ( { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } e. ~P ( Clsd ` J ) <-> { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } C_ ( Clsd ` J ) ) |
| 25 | 22 24 | sylibr | |- ( ph -> { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } e. ~P ( Clsd ` J ) ) |
| 26 | elin | |- ( r e. ( ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } i^i Fin ) <-> ( r e. ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } /\ r e. Fin ) ) |
|
| 27 | velpw | |- ( r e. ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } <-> r C_ { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) |
|
| 28 | ssabral | |- ( r C_ { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } <-> A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) |
|
| 29 | 27 28 | bitri | |- ( r e. ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } <-> A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) |
| 30 | 29 | anbi1i | |- ( ( r e. ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } /\ r e. Fin ) <-> ( A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) /\ r e. Fin ) ) |
| 31 | 26 30 | bitri | |- ( r e. ( ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } i^i Fin ) <-> ( A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) /\ r e. Fin ) ) |
| 32 | raleq | |- ( m = (/) -> ( A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) <-> A. k e. (/) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) |
|
| 33 | 32 | anbi2d | |- ( m = (/) -> ( ( ph /\ A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) <-> ( ph /\ A. k e. (/) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) ) |
| 34 | inteq | |- ( m = (/) -> |^| m = |^| (/) ) |
|
| 35 | 34 | sseq2d | |- ( m = (/) -> ( ( F " k ) C_ |^| m <-> ( F " k ) C_ |^| (/) ) ) |
| 36 | 35 | rexbidv | |- ( m = (/) -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| m <-> E. k e. ran ZZ>= ( F " k ) C_ |^| (/) ) ) |
| 37 | 33 36 | imbi12d | |- ( m = (/) -> ( ( ( ph /\ A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| m ) <-> ( ( ph /\ A. k e. (/) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| (/) ) ) ) |
| 38 | raleq | |- ( m = y -> ( A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) <-> A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) |
|
| 39 | 38 | anbi2d | |- ( m = y -> ( ( ph /\ A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) <-> ( ph /\ A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) ) |
| 40 | inteq | |- ( m = y -> |^| m = |^| y ) |
|
| 41 | 40 | sseq2d | |- ( m = y -> ( ( F " k ) C_ |^| m <-> ( F " k ) C_ |^| y ) ) |
| 42 | 41 | rexbidv | |- ( m = y -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| m <-> E. k e. ran ZZ>= ( F " k ) C_ |^| y ) ) |
| 43 | 39 42 | imbi12d | |- ( m = y -> ( ( ( ph /\ A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| m ) <-> ( ( ph /\ A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| y ) ) ) |
| 44 | raleq | |- ( m = ( y u. { n } ) -> ( A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) <-> A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) |
|
| 45 | 44 | anbi2d | |- ( m = ( y u. { n } ) -> ( ( ph /\ A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) <-> ( ph /\ A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) ) |
| 46 | inteq | |- ( m = ( y u. { n } ) -> |^| m = |^| ( y u. { n } ) ) |
|
| 47 | 46 | sseq2d | |- ( m = ( y u. { n } ) -> ( ( F " k ) C_ |^| m <-> ( F " k ) C_ |^| ( y u. { n } ) ) ) |
| 48 | 47 | rexbidv | |- ( m = ( y u. { n } ) -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| m <-> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) ) |
| 49 | 45 48 | imbi12d | |- ( m = ( y u. { n } ) -> ( ( ( ph /\ A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| m ) <-> ( ( ph /\ A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) ) ) |
| 50 | raleq | |- ( m = r -> ( A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) <-> A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) |
|
| 51 | 50 | anbi2d | |- ( m = r -> ( ( ph /\ A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) <-> ( ph /\ A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) ) |
| 52 | inteq | |- ( m = r -> |^| m = |^| r ) |
|
| 53 | 52 | sseq2d | |- ( m = r -> ( ( F " k ) C_ |^| m <-> ( F " k ) C_ |^| r ) ) |
| 54 | 53 | rexbidv | |- ( m = r -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| m <-> E. k e. ran ZZ>= ( F " k ) C_ |^| r ) ) |
| 55 | 51 54 | imbi12d | |- ( m = r -> ( ( ( ph /\ A. k e. m E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| m ) <-> ( ( ph /\ A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| r ) ) ) |
| 56 | uzf | |- ZZ>= : ZZ --> ~P ZZ |
|
| 57 | ffn | |- ( ZZ>= : ZZ --> ~P ZZ -> ZZ>= Fn ZZ ) |
|
| 58 | 56 57 | ax-mp | |- ZZ>= Fn ZZ |
| 59 | 0z | |- 0 e. ZZ |
|
| 60 | fnfvelrn | |- ( ( ZZ>= Fn ZZ /\ 0 e. ZZ ) -> ( ZZ>= ` 0 ) e. ran ZZ>= ) |
|
| 61 | 58 59 60 | mp2an | |- ( ZZ>= ` 0 ) e. ran ZZ>= |
| 62 | ssv | |- ( F " ( ZZ>= ` 0 ) ) C_ _V |
|
| 63 | int0 | |- |^| (/) = _V |
|
| 64 | 62 63 | sseqtrri | |- ( F " ( ZZ>= ` 0 ) ) C_ |^| (/) |
| 65 | imaeq2 | |- ( k = ( ZZ>= ` 0 ) -> ( F " k ) = ( F " ( ZZ>= ` 0 ) ) ) |
|
| 66 | 65 | sseq1d | |- ( k = ( ZZ>= ` 0 ) -> ( ( F " k ) C_ |^| (/) <-> ( F " ( ZZ>= ` 0 ) ) C_ |^| (/) ) ) |
| 67 | 66 | rspcev | |- ( ( ( ZZ>= ` 0 ) e. ran ZZ>= /\ ( F " ( ZZ>= ` 0 ) ) C_ |^| (/) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| (/) ) |
| 68 | 61 64 67 | mp2an | |- E. k e. ran ZZ>= ( F " k ) C_ |^| (/) |
| 69 | 68 | a1i | |- ( ( ph /\ A. k e. (/) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| (/) ) |
| 70 | ssun1 | |- y C_ ( y u. { n } ) |
|
| 71 | ssralv | |- ( y C_ ( y u. { n } ) -> ( A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) |
|
| 72 | 70 71 | ax-mp | |- ( A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) |
| 73 | 72 | anim2i | |- ( ( ph /\ A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> ( ph /\ A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) |
| 74 | 73 | imim1i | |- ( ( ( ph /\ A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| y ) -> ( ( ph /\ A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| y ) ) |
| 75 | ssun2 | |- { n } C_ ( y u. { n } ) |
|
| 76 | ssralv | |- ( { n } C_ ( y u. { n } ) -> ( A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> A. k e. { n } E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) ) |
|
| 77 | 75 76 | ax-mp | |- ( A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> A. k e. { n } E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) |
| 78 | vex | |- n e. _V |
|
| 79 | eqeq1 | |- ( k = n -> ( k = ( ( cls ` J ) ` ( F " u ) ) <-> n = ( ( cls ` J ) ` ( F " u ) ) ) ) |
|
| 80 | 79 | rexbidv | |- ( k = n -> ( E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) <-> E. u e. ran ZZ>= n = ( ( cls ` J ) ` ( F " u ) ) ) ) |
| 81 | 78 80 | ralsn | |- ( A. k e. { n } E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) <-> E. u e. ran ZZ>= n = ( ( cls ` J ) ` ( F " u ) ) ) |
| 82 | 77 81 | sylib | |- ( A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> E. u e. ran ZZ>= n = ( ( cls ` J ) ` ( F " u ) ) ) |
| 83 | uzin2 | |- ( ( u e. ran ZZ>= /\ k e. ran ZZ>= ) -> ( u i^i k ) e. ran ZZ>= ) |
|
| 84 | 10 11 | sstrid | |- ( ph -> ( F " u ) C_ X ) |
| 85 | 84 13 | sseqtrd | |- ( ph -> ( F " u ) C_ U. J ) |
| 86 | 16 | sscls | |- ( ( J e. Top /\ ( F " u ) C_ U. J ) -> ( F " u ) C_ ( ( cls ` J ) ` ( F " u ) ) ) |
| 87 | 9 85 86 | syl2anc | |- ( ph -> ( F " u ) C_ ( ( cls ` J ) ` ( F " u ) ) ) |
| 88 | sseq2 | |- ( n = ( ( cls ` J ) ` ( F " u ) ) -> ( ( F " u ) C_ n <-> ( F " u ) C_ ( ( cls ` J ) ` ( F " u ) ) ) ) |
|
| 89 | 87 88 | syl5ibrcom | |- ( ph -> ( n = ( ( cls ` J ) ` ( F " u ) ) -> ( F " u ) C_ n ) ) |
| 90 | inss2 | |- ( u i^i k ) C_ k |
|
| 91 | inss1 | |- ( u i^i k ) C_ u |
|
| 92 | imass2 | |- ( ( u i^i k ) C_ k -> ( F " ( u i^i k ) ) C_ ( F " k ) ) |
|
| 93 | imass2 | |- ( ( u i^i k ) C_ u -> ( F " ( u i^i k ) ) C_ ( F " u ) ) |
|
| 94 | 92 93 | anim12i | |- ( ( ( u i^i k ) C_ k /\ ( u i^i k ) C_ u ) -> ( ( F " ( u i^i k ) ) C_ ( F " k ) /\ ( F " ( u i^i k ) ) C_ ( F " u ) ) ) |
| 95 | ssin | |- ( ( ( F " ( u i^i k ) ) C_ ( F " k ) /\ ( F " ( u i^i k ) ) C_ ( F " u ) ) <-> ( F " ( u i^i k ) ) C_ ( ( F " k ) i^i ( F " u ) ) ) |
|
| 96 | 94 95 | sylib | |- ( ( ( u i^i k ) C_ k /\ ( u i^i k ) C_ u ) -> ( F " ( u i^i k ) ) C_ ( ( F " k ) i^i ( F " u ) ) ) |
| 97 | 90 91 96 | mp2an | |- ( F " ( u i^i k ) ) C_ ( ( F " k ) i^i ( F " u ) ) |
| 98 | ss2in | |- ( ( ( F " k ) C_ |^| y /\ ( F " u ) C_ n ) -> ( ( F " k ) i^i ( F " u ) ) C_ ( |^| y i^i n ) ) |
|
| 99 | 97 98 | sstrid | |- ( ( ( F " k ) C_ |^| y /\ ( F " u ) C_ n ) -> ( F " ( u i^i k ) ) C_ ( |^| y i^i n ) ) |
| 100 | 78 | intunsn | |- |^| ( y u. { n } ) = ( |^| y i^i n ) |
| 101 | 99 100 | sseqtrrdi | |- ( ( ( F " k ) C_ |^| y /\ ( F " u ) C_ n ) -> ( F " ( u i^i k ) ) C_ |^| ( y u. { n } ) ) |
| 102 | 101 | expcom | |- ( ( F " u ) C_ n -> ( ( F " k ) C_ |^| y -> ( F " ( u i^i k ) ) C_ |^| ( y u. { n } ) ) ) |
| 103 | 89 102 | syl6 | |- ( ph -> ( n = ( ( cls ` J ) ` ( F " u ) ) -> ( ( F " k ) C_ |^| y -> ( F " ( u i^i k ) ) C_ |^| ( y u. { n } ) ) ) ) |
| 104 | 103 | impd | |- ( ph -> ( ( n = ( ( cls ` J ) ` ( F " u ) ) /\ ( F " k ) C_ |^| y ) -> ( F " ( u i^i k ) ) C_ |^| ( y u. { n } ) ) ) |
| 105 | imaeq2 | |- ( m = ( u i^i k ) -> ( F " m ) = ( F " ( u i^i k ) ) ) |
|
| 106 | 105 | sseq1d | |- ( m = ( u i^i k ) -> ( ( F " m ) C_ |^| ( y u. { n } ) <-> ( F " ( u i^i k ) ) C_ |^| ( y u. { n } ) ) ) |
| 107 | 106 | rspcev | |- ( ( ( u i^i k ) e. ran ZZ>= /\ ( F " ( u i^i k ) ) C_ |^| ( y u. { n } ) ) -> E. m e. ran ZZ>= ( F " m ) C_ |^| ( y u. { n } ) ) |
| 108 | 107 | expcom | |- ( ( F " ( u i^i k ) ) C_ |^| ( y u. { n } ) -> ( ( u i^i k ) e. ran ZZ>= -> E. m e. ran ZZ>= ( F " m ) C_ |^| ( y u. { n } ) ) ) |
| 109 | 104 108 | syl6 | |- ( ph -> ( ( n = ( ( cls ` J ) ` ( F " u ) ) /\ ( F " k ) C_ |^| y ) -> ( ( u i^i k ) e. ran ZZ>= -> E. m e. ran ZZ>= ( F " m ) C_ |^| ( y u. { n } ) ) ) ) |
| 110 | 109 | com23 | |- ( ph -> ( ( u i^i k ) e. ran ZZ>= -> ( ( n = ( ( cls ` J ) ` ( F " u ) ) /\ ( F " k ) C_ |^| y ) -> E. m e. ran ZZ>= ( F " m ) C_ |^| ( y u. { n } ) ) ) ) |
| 111 | 83 110 | syl5 | |- ( ph -> ( ( u e. ran ZZ>= /\ k e. ran ZZ>= ) -> ( ( n = ( ( cls ` J ) ` ( F " u ) ) /\ ( F " k ) C_ |^| y ) -> E. m e. ran ZZ>= ( F " m ) C_ |^| ( y u. { n } ) ) ) ) |
| 112 | 111 | rexlimdvv | |- ( ph -> ( E. u e. ran ZZ>= E. k e. ran ZZ>= ( n = ( ( cls ` J ) ` ( F " u ) ) /\ ( F " k ) C_ |^| y ) -> E. m e. ran ZZ>= ( F " m ) C_ |^| ( y u. { n } ) ) ) |
| 113 | reeanv | |- ( E. u e. ran ZZ>= E. k e. ran ZZ>= ( n = ( ( cls ` J ) ` ( F " u ) ) /\ ( F " k ) C_ |^| y ) <-> ( E. u e. ran ZZ>= n = ( ( cls ` J ) ` ( F " u ) ) /\ E. k e. ran ZZ>= ( F " k ) C_ |^| y ) ) |
|
| 114 | imaeq2 | |- ( m = k -> ( F " m ) = ( F " k ) ) |
|
| 115 | 114 | sseq1d | |- ( m = k -> ( ( F " m ) C_ |^| ( y u. { n } ) <-> ( F " k ) C_ |^| ( y u. { n } ) ) ) |
| 116 | 115 | cbvrexvw | |- ( E. m e. ran ZZ>= ( F " m ) C_ |^| ( y u. { n } ) <-> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) |
| 117 | 112 113 116 | 3imtr3g | |- ( ph -> ( ( E. u e. ran ZZ>= n = ( ( cls ` J ) ` ( F " u ) ) /\ E. k e. ran ZZ>= ( F " k ) C_ |^| y ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) ) |
| 118 | 117 | expd | |- ( ph -> ( E. u e. ran ZZ>= n = ( ( cls ` J ) ` ( F " u ) ) -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| y -> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) ) ) |
| 119 | 82 118 | syl5 | |- ( ph -> ( A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| y -> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) ) ) |
| 120 | 119 | imp | |- ( ( ph /\ A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| y -> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) ) |
| 121 | 74 120 | sylcom | |- ( ( ( ph /\ A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| y ) -> ( ( ph /\ A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) ) |
| 122 | 121 | a1i | |- ( y e. Fin -> ( ( ( ph /\ A. k e. y E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| y ) -> ( ( ph /\ A. k e. ( y u. { n } ) E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| ( y u. { n } ) ) ) ) |
| 123 | 37 43 49 55 69 122 | findcard2 | |- ( r e. Fin -> ( ( ph /\ A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| r ) ) |
| 124 | 123 | com12 | |- ( ( ph /\ A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) ) -> ( r e. Fin -> E. k e. ran ZZ>= ( F " k ) C_ |^| r ) ) |
| 125 | 124 | impr | |- ( ( ph /\ ( A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) /\ r e. Fin ) ) -> E. k e. ran ZZ>= ( F " k ) C_ |^| r ) |
| 126 | 5 | ffnd | |- ( ph -> F Fn NN ) |
| 127 | inss1 | |- ( k i^i NN ) C_ k |
|
| 128 | imass2 | |- ( ( k i^i NN ) C_ k -> ( F " ( k i^i NN ) ) C_ ( F " k ) ) |
|
| 129 | 127 128 | ax-mp | |- ( F " ( k i^i NN ) ) C_ ( F " k ) |
| 130 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 131 | 1z | |- 1 e. ZZ |
|
| 132 | fnfvelrn | |- ( ( ZZ>= Fn ZZ /\ 1 e. ZZ ) -> ( ZZ>= ` 1 ) e. ran ZZ>= ) |
|
| 133 | 58 131 132 | mp2an | |- ( ZZ>= ` 1 ) e. ran ZZ>= |
| 134 | 130 133 | eqeltri | |- NN e. ran ZZ>= |
| 135 | uzin2 | |- ( ( k e. ran ZZ>= /\ NN e. ran ZZ>= ) -> ( k i^i NN ) e. ran ZZ>= ) |
|
| 136 | 134 135 | mpan2 | |- ( k e. ran ZZ>= -> ( k i^i NN ) e. ran ZZ>= ) |
| 137 | uzn0 | |- ( ( k i^i NN ) e. ran ZZ>= -> ( k i^i NN ) =/= (/) ) |
|
| 138 | 136 137 | syl | |- ( k e. ran ZZ>= -> ( k i^i NN ) =/= (/) ) |
| 139 | n0 | |- ( ( k i^i NN ) =/= (/) <-> E. y y e. ( k i^i NN ) ) |
|
| 140 | 138 139 | sylib | |- ( k e. ran ZZ>= -> E. y y e. ( k i^i NN ) ) |
| 141 | fnfun | |- ( F Fn NN -> Fun F ) |
|
| 142 | inss2 | |- ( k i^i NN ) C_ NN |
|
| 143 | fndm | |- ( F Fn NN -> dom F = NN ) |
|
| 144 | 142 143 | sseqtrrid | |- ( F Fn NN -> ( k i^i NN ) C_ dom F ) |
| 145 | funfvima2 | |- ( ( Fun F /\ ( k i^i NN ) C_ dom F ) -> ( y e. ( k i^i NN ) -> ( F ` y ) e. ( F " ( k i^i NN ) ) ) ) |
|
| 146 | 141 144 145 | syl2anc | |- ( F Fn NN -> ( y e. ( k i^i NN ) -> ( F ` y ) e. ( F " ( k i^i NN ) ) ) ) |
| 147 | ne0i | |- ( ( F ` y ) e. ( F " ( k i^i NN ) ) -> ( F " ( k i^i NN ) ) =/= (/) ) |
|
| 148 | 146 147 | syl6 | |- ( F Fn NN -> ( y e. ( k i^i NN ) -> ( F " ( k i^i NN ) ) =/= (/) ) ) |
| 149 | 148 | exlimdv | |- ( F Fn NN -> ( E. y y e. ( k i^i NN ) -> ( F " ( k i^i NN ) ) =/= (/) ) ) |
| 150 | 140 149 | syl5 | |- ( F Fn NN -> ( k e. ran ZZ>= -> ( F " ( k i^i NN ) ) =/= (/) ) ) |
| 151 | 150 | imp | |- ( ( F Fn NN /\ k e. ran ZZ>= ) -> ( F " ( k i^i NN ) ) =/= (/) ) |
| 152 | ssn0 | |- ( ( ( F " ( k i^i NN ) ) C_ ( F " k ) /\ ( F " ( k i^i NN ) ) =/= (/) ) -> ( F " k ) =/= (/) ) |
|
| 153 | 129 151 152 | sylancr | |- ( ( F Fn NN /\ k e. ran ZZ>= ) -> ( F " k ) =/= (/) ) |
| 154 | ssn0 | |- ( ( ( F " k ) C_ |^| r /\ ( F " k ) =/= (/) ) -> |^| r =/= (/) ) |
|
| 155 | 154 | expcom | |- ( ( F " k ) =/= (/) -> ( ( F " k ) C_ |^| r -> |^| r =/= (/) ) ) |
| 156 | 153 155 | syl | |- ( ( F Fn NN /\ k e. ran ZZ>= ) -> ( ( F " k ) C_ |^| r -> |^| r =/= (/) ) ) |
| 157 | 156 | rexlimdva | |- ( F Fn NN -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| r -> |^| r =/= (/) ) ) |
| 158 | 126 157 | syl | |- ( ph -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| r -> |^| r =/= (/) ) ) |
| 159 | 158 | adantr | |- ( ( ph /\ ( A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) /\ r e. Fin ) ) -> ( E. k e. ran ZZ>= ( F " k ) C_ |^| r -> |^| r =/= (/) ) ) |
| 160 | 125 159 | mpd | |- ( ( ph /\ ( A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) /\ r e. Fin ) ) -> |^| r =/= (/) ) |
| 161 | 160 | necomd | |- ( ( ph /\ ( A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) /\ r e. Fin ) ) -> (/) =/= |^| r ) |
| 162 | 161 | neneqd | |- ( ( ph /\ ( A. k e. r E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) /\ r e. Fin ) ) -> -. (/) = |^| r ) |
| 163 | 31 162 | sylan2b | |- ( ( ph /\ r e. ( ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } i^i Fin ) ) -> -. (/) = |^| r ) |
| 164 | 163 | nrexdv | |- ( ph -> -. E. r e. ( ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } i^i Fin ) (/) = |^| r ) |
| 165 | 0ex | |- (/) e. _V |
|
| 166 | zex | |- ZZ e. _V |
|
| 167 | 166 | pwex | |- ~P ZZ e. _V |
| 168 | frn | |- ( ZZ>= : ZZ --> ~P ZZ -> ran ZZ>= C_ ~P ZZ ) |
|
| 169 | 56 168 | ax-mp | |- ran ZZ>= C_ ~P ZZ |
| 170 | 167 169 | ssexi | |- ran ZZ>= e. _V |
| 171 | 170 | abrexex | |- { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } e. _V |
| 172 | elfi | |- ( ( (/) e. _V /\ { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } e. _V ) -> ( (/) e. ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) <-> E. r e. ( ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } i^i Fin ) (/) = |^| r ) ) |
|
| 173 | 165 171 172 | mp2an | |- ( (/) e. ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) <-> E. r e. ( ~P { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } i^i Fin ) (/) = |^| r ) |
| 174 | 164 173 | sylnibr | |- ( ph -> -. (/) e. ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) ) |
| 175 | cmptop | |- ( J e. Comp -> J e. Top ) |
|
| 176 | cmpfi | |- ( J e. Top -> ( J e. Comp <-> A. m e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` m ) -> |^| m =/= (/) ) ) ) |
|
| 177 | 175 176 | syl | |- ( J e. Comp -> ( J e. Comp <-> A. m e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` m ) -> |^| m =/= (/) ) ) ) |
| 178 | 177 | ibi | |- ( J e. Comp -> A. m e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` m ) -> |^| m =/= (/) ) ) |
| 179 | fveq2 | |- ( m = { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } -> ( fi ` m ) = ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) ) |
|
| 180 | 179 | eleq2d | |- ( m = { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } -> ( (/) e. ( fi ` m ) <-> (/) e. ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) ) ) |
| 181 | 180 | notbid | |- ( m = { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } -> ( -. (/) e. ( fi ` m ) <-> -. (/) e. ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) ) ) |
| 182 | inteq | |- ( m = { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } -> |^| m = |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) |
|
| 183 | 182 | neeq1d | |- ( m = { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } -> ( |^| m =/= (/) <-> |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } =/= (/) ) ) |
| 184 | n0 | |- ( |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } =/= (/) <-> E. y y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) |
|
| 185 | 183 184 | bitrdi | |- ( m = { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } -> ( |^| m =/= (/) <-> E. y y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) ) |
| 186 | 181 185 | imbi12d | |- ( m = { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } -> ( ( -. (/) e. ( fi ` m ) -> |^| m =/= (/) ) <-> ( -. (/) e. ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) -> E. y y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) ) ) |
| 187 | 186 | rspccv | |- ( A. m e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` m ) -> |^| m =/= (/) ) -> ( { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } e. ~P ( Clsd ` J ) -> ( -. (/) e. ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) -> E. y y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) ) ) |
| 188 | 178 187 | syl | |- ( J e. Comp -> ( { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } e. ~P ( Clsd ` J ) -> ( -. (/) e. ( fi ` { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) -> E. y y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) ) ) |
| 189 | 3 25 174 188 | syl3c | |- ( ph -> E. y y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) |
| 190 | lmrel | |- Rel ( ~~>t ` J ) |
|
| 191 | r19.23v | |- ( A. u e. ran ZZ>= ( k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) <-> ( E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) ) |
|
| 192 | 191 | albii | |- ( A. k A. u e. ran ZZ>= ( k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) <-> A. k ( E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) ) |
| 193 | fvex | |- ( ( cls ` J ) ` ( F " u ) ) e. _V |
|
| 194 | eleq2 | |- ( k = ( ( cls ` J ) ` ( F " u ) ) -> ( y e. k <-> y e. ( ( cls ` J ) ` ( F " u ) ) ) ) |
|
| 195 | 193 194 | ceqsalv | |- ( A. k ( k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) <-> y e. ( ( cls ` J ) ` ( F " u ) ) ) |
| 196 | 195 | ralbii | |- ( A. u e. ran ZZ>= A. k ( k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) <-> A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) |
| 197 | ralcom4 | |- ( A. u e. ran ZZ>= A. k ( k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) <-> A. k A. u e. ran ZZ>= ( k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) ) |
|
| 198 | 196 197 | bitr3i | |- ( A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) <-> A. k A. u e. ran ZZ>= ( k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) ) |
| 199 | vex | |- y e. _V |
|
| 200 | 199 | elintab | |- ( y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } <-> A. k ( E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) -> y e. k ) ) |
| 201 | 192 198 200 | 3bitr4i | |- ( A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) <-> y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) |
| 202 | eqid | |- ( ( cls ` J ) ` ( F " NN ) ) = ( ( cls ` J ) ` ( F " NN ) ) |
|
| 203 | imaeq2 | |- ( u = NN -> ( F " u ) = ( F " NN ) ) |
|
| 204 | 203 | fveq2d | |- ( u = NN -> ( ( cls ` J ) ` ( F " u ) ) = ( ( cls ` J ) ` ( F " NN ) ) ) |
| 205 | 204 | rspceeqv | |- ( ( NN e. ran ZZ>= /\ ( ( cls ` J ) ` ( F " NN ) ) = ( ( cls ` J ) ` ( F " NN ) ) ) -> E. u e. ran ZZ>= ( ( cls ` J ) ` ( F " NN ) ) = ( ( cls ` J ) ` ( F " u ) ) ) |
| 206 | 134 202 205 | mp2an | |- E. u e. ran ZZ>= ( ( cls ` J ) ` ( F " NN ) ) = ( ( cls ` J ) ` ( F " u ) ) |
| 207 | fvex | |- ( ( cls ` J ) ` ( F " NN ) ) e. _V |
|
| 208 | eqeq1 | |- ( k = ( ( cls ` J ) ` ( F " NN ) ) -> ( k = ( ( cls ` J ) ` ( F " u ) ) <-> ( ( cls ` J ) ` ( F " NN ) ) = ( ( cls ` J ) ` ( F " u ) ) ) ) |
|
| 209 | 208 | rexbidv | |- ( k = ( ( cls ` J ) ` ( F " NN ) ) -> ( E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) <-> E. u e. ran ZZ>= ( ( cls ` J ) ` ( F " NN ) ) = ( ( cls ` J ) ` ( F " u ) ) ) ) |
| 210 | 207 209 | elab | |- ( ( ( cls ` J ) ` ( F " NN ) ) e. { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } <-> E. u e. ran ZZ>= ( ( cls ` J ) ` ( F " NN ) ) = ( ( cls ` J ) ` ( F " u ) ) ) |
| 211 | 206 210 | mpbir | |- ( ( cls ` J ) ` ( F " NN ) ) e. { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } |
| 212 | intss1 | |- ( ( ( cls ` J ) ` ( F " NN ) ) e. { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } -> |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } C_ ( ( cls ` J ) ` ( F " NN ) ) ) |
|
| 213 | 211 212 | ax-mp | |- |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } C_ ( ( cls ` J ) ` ( F " NN ) ) |
| 214 | imassrn | |- ( F " NN ) C_ ran F |
|
| 215 | 214 14 | sstrid | |- ( ph -> ( F " NN ) C_ U. J ) |
| 216 | 16 | clsss3 | |- ( ( J e. Top /\ ( F " NN ) C_ U. J ) -> ( ( cls ` J ) ` ( F " NN ) ) C_ U. J ) |
| 217 | 9 215 216 | syl2anc | |- ( ph -> ( ( cls ` J ) ` ( F " NN ) ) C_ U. J ) |
| 218 | 217 13 | sseqtrrd | |- ( ph -> ( ( cls ` J ) ` ( F " NN ) ) C_ X ) |
| 219 | 213 218 | sstrid | |- ( ph -> |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } C_ X ) |
| 220 | 219 | sselda | |- ( ( ph /\ y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) -> y e. X ) |
| 221 | 201 220 | sylan2b | |- ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) -> y e. X ) |
| 222 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 223 | 130 7 222 | iscau3 | |- ( ph -> ( F e. ( Cau ` D ) <-> ( F e. ( X ^pm CC ) /\ A. y e. RR+ E. m e. NN A. k e. ( ZZ>= ` m ) ( k e. dom F /\ ( F ` k ) e. X /\ A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) ) ) ) |
| 224 | 4 223 | mpbid | |- ( ph -> ( F e. ( X ^pm CC ) /\ A. y e. RR+ E. m e. NN A. k e. ( ZZ>= ` m ) ( k e. dom F /\ ( F ` k ) e. X /\ A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) ) ) |
| 225 | 224 | simprd | |- ( ph -> A. y e. RR+ E. m e. NN A. k e. ( ZZ>= ` m ) ( k e. dom F /\ ( F ` k ) e. X /\ A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) ) |
| 226 | simp3 | |- ( ( k e. dom F /\ ( F ` k ) e. X /\ A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) -> A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) |
|
| 227 | 226 | ralimi | |- ( A. k e. ( ZZ>= ` m ) ( k e. dom F /\ ( F ` k ) e. X /\ A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) -> A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) |
| 228 | 227 | reximi | |- ( E. m e. NN A. k e. ( ZZ>= ` m ) ( k e. dom F /\ ( F ` k ) e. X /\ A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) -> E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) |
| 229 | 228 | ralimi | |- ( A. y e. RR+ E. m e. NN A. k e. ( ZZ>= ` m ) ( k e. dom F /\ ( F ` k ) e. X /\ A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) -> A. y e. RR+ E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) |
| 230 | 225 229 | syl | |- ( ph -> A. y e. RR+ E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) |
| 231 | 230 | adantr | |- ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) -> A. y e. RR+ E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y ) |
| 232 | rphalfcl | |- ( r e. RR+ -> ( r / 2 ) e. RR+ ) |
|
| 233 | breq2 | |- ( y = ( r / 2 ) -> ( ( ( F ` k ) D ( F ` n ) ) < y <-> ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) ) ) |
|
| 234 | 233 | 2ralbidv | |- ( y = ( r / 2 ) -> ( A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y <-> A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) ) ) |
| 235 | 234 | rexbidv | |- ( y = ( r / 2 ) -> ( E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y <-> E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) ) ) |
| 236 | 235 | rspccva | |- ( ( A. y e. RR+ E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < y /\ ( r / 2 ) e. RR+ ) -> E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) ) |
| 237 | 231 232 236 | syl2an | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ r e. RR+ ) -> E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) ) |
| 238 | 5 | ffund | |- ( ph -> Fun F ) |
| 239 | 238 | ad2antrr | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> Fun F ) |
| 240 | 9 | ad2antrr | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> J e. Top ) |
| 241 | imassrn | |- ( F " ( ZZ>= ` m ) ) C_ ran F |
|
| 242 | 241 14 | sstrid | |- ( ph -> ( F " ( ZZ>= ` m ) ) C_ U. J ) |
| 243 | 242 | ad2antrr | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( F " ( ZZ>= ` m ) ) C_ U. J ) |
| 244 | nnz | |- ( m e. NN -> m e. ZZ ) |
|
| 245 | fnfvelrn | |- ( ( ZZ>= Fn ZZ /\ m e. ZZ ) -> ( ZZ>= ` m ) e. ran ZZ>= ) |
|
| 246 | 58 244 245 | sylancr | |- ( m e. NN -> ( ZZ>= ` m ) e. ran ZZ>= ) |
| 247 | 246 | ad2antll | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( ZZ>= ` m ) e. ran ZZ>= ) |
| 248 | simplr | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) |
|
| 249 | imaeq2 | |- ( u = ( ZZ>= ` m ) -> ( F " u ) = ( F " ( ZZ>= ` m ) ) ) |
|
| 250 | 249 | fveq2d | |- ( u = ( ZZ>= ` m ) -> ( ( cls ` J ) ` ( F " u ) ) = ( ( cls ` J ) ` ( F " ( ZZ>= ` m ) ) ) ) |
| 251 | 250 | eleq2d | |- ( u = ( ZZ>= ` m ) -> ( y e. ( ( cls ` J ) ` ( F " u ) ) <-> y e. ( ( cls ` J ) ` ( F " ( ZZ>= ` m ) ) ) ) ) |
| 252 | 251 | rspcv | |- ( ( ZZ>= ` m ) e. ran ZZ>= -> ( A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) -> y e. ( ( cls ` J ) ` ( F " ( ZZ>= ` m ) ) ) ) ) |
| 253 | 247 248 252 | sylc | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> y e. ( ( cls ` J ) ` ( F " ( ZZ>= ` m ) ) ) ) |
| 254 | 7 | ad2antrr | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> D e. ( *Met ` X ) ) |
| 255 | 221 | adantr | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> y e. X ) |
| 256 | 232 | ad2antrl | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( r / 2 ) e. RR+ ) |
| 257 | 256 | rpxrd | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( r / 2 ) e. RR* ) |
| 258 | 1 | blopn | |- ( ( D e. ( *Met ` X ) /\ y e. X /\ ( r / 2 ) e. RR* ) -> ( y ( ball ` D ) ( r / 2 ) ) e. J ) |
| 259 | 254 255 257 258 | syl3anc | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( y ( ball ` D ) ( r / 2 ) ) e. J ) |
| 260 | blcntr | |- ( ( D e. ( *Met ` X ) /\ y e. X /\ ( r / 2 ) e. RR+ ) -> y e. ( y ( ball ` D ) ( r / 2 ) ) ) |
|
| 261 | 254 255 256 260 | syl3anc | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> y e. ( y ( ball ` D ) ( r / 2 ) ) ) |
| 262 | 16 | clsndisj | |- ( ( ( J e. Top /\ ( F " ( ZZ>= ` m ) ) C_ U. J /\ y e. ( ( cls ` J ) ` ( F " ( ZZ>= ` m ) ) ) ) /\ ( ( y ( ball ` D ) ( r / 2 ) ) e. J /\ y e. ( y ( ball ` D ) ( r / 2 ) ) ) ) -> ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) =/= (/) ) |
| 263 | 240 243 253 259 261 262 | syl32anc | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) =/= (/) ) |
| 264 | n0 | |- ( ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) =/= (/) <-> E. n n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) ) |
|
| 265 | inss2 | |- ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) C_ ( F " ( ZZ>= ` m ) ) |
|
| 266 | 265 | sseli | |- ( n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) -> n e. ( F " ( ZZ>= ` m ) ) ) |
| 267 | fvelima | |- ( ( Fun F /\ n e. ( F " ( ZZ>= ` m ) ) ) -> E. k e. ( ZZ>= ` m ) ( F ` k ) = n ) |
|
| 268 | 266 267 | sylan2 | |- ( ( Fun F /\ n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) ) -> E. k e. ( ZZ>= ` m ) ( F ` k ) = n ) |
| 269 | inss1 | |- ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) C_ ( y ( ball ` D ) ( r / 2 ) ) |
|
| 270 | 269 | sseli | |- ( n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) -> n e. ( y ( ball ` D ) ( r / 2 ) ) ) |
| 271 | 270 | adantl | |- ( ( Fun F /\ n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) ) -> n e. ( y ( ball ` D ) ( r / 2 ) ) ) |
| 272 | eleq1a | |- ( n e. ( y ( ball ` D ) ( r / 2 ) ) -> ( ( F ` k ) = n -> ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) |
|
| 273 | 271 272 | syl | |- ( ( Fun F /\ n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) ) -> ( ( F ` k ) = n -> ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) |
| 274 | 273 | reximdv | |- ( ( Fun F /\ n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) ) -> ( E. k e. ( ZZ>= ` m ) ( F ` k ) = n -> E. k e. ( ZZ>= ` m ) ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) |
| 275 | 268 274 | mpd | |- ( ( Fun F /\ n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) ) -> E. k e. ( ZZ>= ` m ) ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) |
| 276 | 275 | ex | |- ( Fun F -> ( n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) -> E. k e. ( ZZ>= ` m ) ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) |
| 277 | 276 | exlimdv | |- ( Fun F -> ( E. n n e. ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) -> E. k e. ( ZZ>= ` m ) ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) |
| 278 | 264 277 | biimtrid | |- ( Fun F -> ( ( ( y ( ball ` D ) ( r / 2 ) ) i^i ( F " ( ZZ>= ` m ) ) ) =/= (/) -> E. k e. ( ZZ>= ` m ) ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) |
| 279 | 239 263 278 | sylc | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> E. k e. ( ZZ>= ` m ) ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) |
| 280 | r19.29 | |- ( ( A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ E. k e. ( ZZ>= ` m ) ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) -> E. k e. ( ZZ>= ` m ) ( A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) |
|
| 281 | uznnssnn | |- ( m e. NN -> ( ZZ>= ` m ) C_ NN ) |
|
| 282 | 281 | ad2antll | |- ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( ZZ>= ` m ) C_ NN ) |
| 283 | simprlr | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) |
|
| 284 | 7 | ad3antrrr | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> D e. ( *Met ` X ) ) |
| 285 | simplrl | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> r e. RR+ ) |
|
| 286 | 285 232 | syl | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( r / 2 ) e. RR+ ) |
| 287 | 286 | rpxrd | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( r / 2 ) e. RR* ) |
| 288 | simpllr | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> y e. X ) |
|
| 289 | 5 | ad3antrrr | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> F : NN --> X ) |
| 290 | eluznn | |- ( ( m e. NN /\ k e. ( ZZ>= ` m ) ) -> k e. NN ) |
|
| 291 | 290 | ad2ant2lr | |- ( ( ( r e. RR+ /\ m e. NN ) /\ ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) -> k e. NN ) |
| 292 | 291 | ad2ant2lr | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> k e. NN ) |
| 293 | 289 292 | ffvelcdmd | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( F ` k ) e. X ) |
| 294 | elbl3 | |- ( ( ( D e. ( *Met ` X ) /\ ( r / 2 ) e. RR* ) /\ ( y e. X /\ ( F ` k ) e. X ) ) -> ( ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) <-> ( ( F ` k ) D y ) < ( r / 2 ) ) ) |
|
| 295 | 284 287 288 293 294 | syl22anc | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) <-> ( ( F ` k ) D y ) < ( r / 2 ) ) ) |
| 296 | 283 295 | mpbid | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( F ` k ) D y ) < ( r / 2 ) ) |
| 297 | 2 | ad3antrrr | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> D e. ( Met ` X ) ) |
| 298 | simprr | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> n e. ( ZZ>= ` k ) ) |
|
| 299 | eluznn | |- ( ( k e. NN /\ n e. ( ZZ>= ` k ) ) -> n e. NN ) |
|
| 300 | 292 298 299 | syl2anc | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> n e. NN ) |
| 301 | 289 300 | ffvelcdmd | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( F ` n ) e. X ) |
| 302 | metcl | |- ( ( D e. ( Met ` X ) /\ ( F ` k ) e. X /\ ( F ` n ) e. X ) -> ( ( F ` k ) D ( F ` n ) ) e. RR ) |
|
| 303 | 297 293 301 302 | syl3anc | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( F ` k ) D ( F ` n ) ) e. RR ) |
| 304 | metcl | |- ( ( D e. ( Met ` X ) /\ ( F ` k ) e. X /\ y e. X ) -> ( ( F ` k ) D y ) e. RR ) |
|
| 305 | 297 293 288 304 | syl3anc | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( F ` k ) D y ) e. RR ) |
| 306 | 286 | rpred | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( r / 2 ) e. RR ) |
| 307 | lt2add | |- ( ( ( ( ( F ` k ) D ( F ` n ) ) e. RR /\ ( ( F ` k ) D y ) e. RR ) /\ ( ( r / 2 ) e. RR /\ ( r / 2 ) e. RR ) ) -> ( ( ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ ( ( F ` k ) D y ) < ( r / 2 ) ) -> ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < ( ( r / 2 ) + ( r / 2 ) ) ) ) |
|
| 308 | 303 305 306 306 307 | syl22anc | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ ( ( F ` k ) D y ) < ( r / 2 ) ) -> ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < ( ( r / 2 ) + ( r / 2 ) ) ) ) |
| 309 | 296 308 | mpan2d | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < ( ( r / 2 ) + ( r / 2 ) ) ) ) |
| 310 | 285 | rpcnd | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> r e. CC ) |
| 311 | 310 | 2halvesd | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( r / 2 ) + ( r / 2 ) ) = r ) |
| 312 | 311 | breq2d | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < ( ( r / 2 ) + ( r / 2 ) ) <-> ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < r ) ) |
| 313 | 309 312 | sylibd | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < r ) ) |
| 314 | mettri2 | |- ( ( D e. ( Met ` X ) /\ ( ( F ` k ) e. X /\ ( F ` n ) e. X /\ y e. X ) ) -> ( ( F ` n ) D y ) <_ ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) ) |
|
| 315 | 297 293 301 288 314 | syl13anc | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( F ` n ) D y ) <_ ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) ) |
| 316 | metcl | |- ( ( D e. ( Met ` X ) /\ ( F ` n ) e. X /\ y e. X ) -> ( ( F ` n ) D y ) e. RR ) |
|
| 317 | 297 301 288 316 | syl3anc | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( F ` n ) D y ) e. RR ) |
| 318 | 303 305 | readdcld | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) e. RR ) |
| 319 | 285 | rpred | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> r e. RR ) |
| 320 | lelttr | |- ( ( ( ( F ` n ) D y ) e. RR /\ ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) e. RR /\ r e. RR ) -> ( ( ( ( F ` n ) D y ) <_ ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) /\ ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < r ) -> ( ( F ` n ) D y ) < r ) ) |
|
| 321 | 317 318 319 320 | syl3anc | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( ( ( F ` n ) D y ) <_ ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) /\ ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < r ) -> ( ( F ` n ) D y ) < r ) ) |
| 322 | 315 321 | mpand | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( ( ( F ` k ) D ( F ` n ) ) + ( ( F ` k ) D y ) ) < r -> ( ( F ` n ) D y ) < r ) ) |
| 323 | 313 322 | syld | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) /\ n e. ( ZZ>= ` k ) ) ) -> ( ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> ( ( F ` n ) D y ) < r ) ) |
| 324 | 323 | anassrs | |- ( ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) /\ n e. ( ZZ>= ` k ) ) -> ( ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> ( ( F ` n ) D y ) < r ) ) |
| 325 | 324 | ralimdva | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ ( k e. ( ZZ>= ` m ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) ) -> ( A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 326 | 325 | expr | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ k e. ( ZZ>= ` m ) ) -> ( ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) -> ( A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) ) |
| 327 | 326 | com23 | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ k e. ( ZZ>= ` m ) ) -> ( A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> ( ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) -> A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) ) |
| 328 | 327 | impd | |- ( ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) /\ k e. ( ZZ>= ` m ) ) -> ( ( A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) -> A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 329 | 328 | reximdva | |- ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( E. k e. ( ZZ>= ` m ) ( A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) -> E. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 330 | ssrexv | |- ( ( ZZ>= ` m ) C_ NN -> ( E. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r -> E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
|
| 331 | 282 329 330 | sylsyld | |- ( ( ( ph /\ y e. X ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( E. k e. ( ZZ>= ` m ) ( A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) -> E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 332 | 221 331 | syldanl | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( E. k e. ( ZZ>= ` m ) ( A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) -> E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 333 | 280 332 | syl5 | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( ( A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) /\ E. k e. ( ZZ>= ` m ) ( F ` k ) e. ( y ( ball ` D ) ( r / 2 ) ) ) -> E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 334 | 279 333 | mpan2d | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ ( r e. RR+ /\ m e. NN ) ) -> ( A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 335 | 334 | anassrs | |- ( ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ r e. RR+ ) /\ m e. NN ) -> ( A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 336 | 335 | rexlimdva | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ r e. RR+ ) -> ( E. m e. NN A. k e. ( ZZ>= ` m ) A. n e. ( ZZ>= ` k ) ( ( F ` k ) D ( F ` n ) ) < ( r / 2 ) -> E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) |
| 337 | 237 336 | mpd | |- ( ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) /\ r e. RR+ ) -> E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) |
| 338 | 337 | ralrimiva | |- ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) -> A. r e. RR+ E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) |
| 339 | eqidd | |- ( ( ph /\ n e. NN ) -> ( F ` n ) = ( F ` n ) ) |
|
| 340 | 1 7 130 222 339 5 | lmmbrf | |- ( ph -> ( F ( ~~>t ` J ) y <-> ( y e. X /\ A. r e. RR+ E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) ) |
| 341 | 340 | adantr | |- ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) -> ( F ( ~~>t ` J ) y <-> ( y e. X /\ A. r e. RR+ E. k e. NN A. n e. ( ZZ>= ` k ) ( ( F ` n ) D y ) < r ) ) ) |
| 342 | 221 338 341 | mpbir2and | |- ( ( ph /\ A. u e. ran ZZ>= y e. ( ( cls ` J ) ` ( F " u ) ) ) -> F ( ~~>t ` J ) y ) |
| 343 | 201 342 | sylan2br | |- ( ( ph /\ y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) -> F ( ~~>t ` J ) y ) |
| 344 | releldm | |- ( ( Rel ( ~~>t ` J ) /\ F ( ~~>t ` J ) y ) -> F e. dom ( ~~>t ` J ) ) |
|
| 345 | 190 343 344 | sylancr | |- ( ( ph /\ y e. |^| { k | E. u e. ran ZZ>= k = ( ( cls ` J ) ` ( F " u ) ) } ) -> F e. dom ( ~~>t ` J ) ) |
| 346 | 189 345 | exlimddv | |- ( ph -> F e. dom ( ~~>t ` J ) ) |