This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One half of heibor , that does not require any Choice. A compact metric space is complete and totally bounded. We prove completeness in cmpcmet and total boundedness here, which follows trivially from the fact that the set of all r -balls is an open cover of X , so finitely many cover X . (Contributed by Jeff Madsen, 16-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | heibor1 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | simpll | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ ( 𝑥 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑥 : ℕ ⟶ 𝑋 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 3 | simplr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ ( 𝑥 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑥 : ℕ ⟶ 𝑋 ) ) → 𝐽 ∈ Comp ) | |
| 4 | simprl | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ ( 𝑥 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑥 : ℕ ⟶ 𝑋 ) ) → 𝑥 ∈ ( Cau ‘ 𝐷 ) ) | |
| 5 | simprr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ ( 𝑥 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑥 : ℕ ⟶ 𝑋 ) ) → 𝑥 : ℕ ⟶ 𝑋 ) | |
| 6 | 1 2 3 4 5 | heibor1lem | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ ( 𝑥 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑥 : ℕ ⟶ 𝑋 ) ) → 𝑥 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 7 | 6 | expr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑥 ∈ ( Cau ‘ 𝐷 ) ) → ( 𝑥 : ℕ ⟶ 𝑋 → 𝑥 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 8 | 7 | ralrimiva | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → ∀ 𝑥 ∈ ( Cau ‘ 𝐷 ) ( 𝑥 : ℕ ⟶ 𝑋 → 𝑥 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 9 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 10 | 1zzd | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → 1 ∈ ℤ ) | |
| 11 | simpl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 12 | 9 1 10 11 | iscmet3 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ∀ 𝑥 ∈ ( Cau ‘ 𝐷 ) ( 𝑥 : ℕ ⟶ 𝑋 → 𝑥 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ) |
| 13 | 8 12 | mpbird | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 14 | simplr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → 𝐽 ∈ Comp ) | |
| 15 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 16 | id | ⊢ ( 𝑧 ∈ 𝑋 → 𝑧 ∈ 𝑋 ) | |
| 17 | rpxr | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) | |
| 18 | 1 | blopn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 ) |
| 19 | 15 16 17 18 | syl3an | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 ) |
| 20 | 19 | 3com23 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 ) |
| 21 | 20 | 3expa | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 ) |
| 22 | eleq1a | ⊢ ( ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 → ( 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑦 ∈ 𝐽 ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑦 ∈ 𝐽 ) ) |
| 24 | 23 | rexlimdva | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑦 ∈ 𝐽 ) ) |
| 25 | 24 | adantlr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑦 ∈ 𝐽 ) ) |
| 26 | 25 | abssdv | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ⊆ 𝐽 ) |
| 27 | 15 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 28 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 29 | 27 28 | syl | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → 𝑋 = ∪ 𝐽 ) |
| 30 | blcntr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) | |
| 31 | 15 30 | syl3an1 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 32 | 31 | 3com23 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 33 | 32 | 3expa | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 34 | ovex | ⊢ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ V | |
| 35 | 34 | elabrex | ⊢ ( 𝑧 ∈ 𝑋 → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
| 36 | 35 | adantl | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
| 37 | elunii | ⊢ ( ( 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) → 𝑧 ∈ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) | |
| 38 | 33 36 37 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
| 39 | 38 | ralrimiva | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) → ∀ 𝑧 ∈ 𝑋 𝑧 ∈ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
| 40 | 39 | adantlr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∀ 𝑧 ∈ 𝑋 𝑧 ∈ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
| 41 | nfcv | ⊢ Ⅎ 𝑧 𝑋 | |
| 42 | nfre1 | ⊢ Ⅎ 𝑧 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) | |
| 43 | 42 | nfab | ⊢ Ⅎ 𝑧 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } |
| 44 | 43 | nfuni | ⊢ Ⅎ 𝑧 ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } |
| 45 | 41 44 | dfss3f | ⊢ ( 𝑋 ⊆ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ↔ ∀ 𝑧 ∈ 𝑋 𝑧 ∈ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
| 46 | 40 45 | sylibr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → 𝑋 ⊆ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
| 47 | 29 46 | eqsstrrd | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∪ 𝐽 ⊆ ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
| 48 | 26 | unissd | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ⊆ ∪ 𝐽 ) |
| 49 | 47 48 | eqssd | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∪ 𝐽 = ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) |
| 50 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 51 | 50 | cmpcov | ⊢ ( ( 𝐽 ∈ Comp ∧ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) → ∃ 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ∪ 𝐽 = ∪ 𝑥 ) |
| 52 | 14 26 49 51 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ∪ 𝐽 = ∪ 𝑥 ) |
| 53 | elin | ⊢ ( 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ↔ ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ 𝑥 ∈ Fin ) ) | |
| 54 | ancom | ⊢ ( ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ 𝑥 ∈ Fin ) ↔ ( 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ) | |
| 55 | 53 54 | bitri | ⊢ ( 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ↔ ( 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ) |
| 56 | 55 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑥 ) ↔ ( ( 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ∧ ∪ 𝐽 = ∪ 𝑥 ) ) |
| 57 | anass | ⊢ ( ( ( 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ∧ ∪ 𝐽 = ∪ 𝑥 ) ↔ ( 𝑥 ∈ Fin ∧ ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ ∪ 𝐽 = ∪ 𝑥 ) ) ) | |
| 58 | 56 57 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑥 ) ↔ ( 𝑥 ∈ Fin ∧ ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ ∪ 𝐽 = ∪ 𝑥 ) ) ) |
| 59 | 58 | rexbii2 | ⊢ ( ∃ 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ∪ 𝐽 = ∪ 𝑥 ↔ ∃ 𝑥 ∈ Fin ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ ∪ 𝐽 = ∪ 𝑥 ) ) |
| 60 | 52 59 | sylib | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑥 ∈ Fin ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ ∪ 𝐽 = ∪ 𝑥 ) ) |
| 61 | ancom | ⊢ ( ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ ∪ 𝐽 = ∪ 𝑥 ) ↔ ( ∪ 𝐽 = ∪ 𝑥 ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ) | |
| 62 | eqcom | ⊢ ( ∪ 𝑥 = 𝑋 ↔ 𝑋 = ∪ 𝑥 ) | |
| 63 | 29 | eqeq1d | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑋 = ∪ 𝑥 ↔ ∪ 𝐽 = ∪ 𝑥 ) ) |
| 64 | 62 63 | bitr2id | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ∪ 𝐽 = ∪ 𝑥 ↔ ∪ 𝑥 = 𝑋 ) ) |
| 65 | 64 | anbi1d | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ( ∪ 𝐽 = ∪ 𝑥 ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ↔ ( ∪ 𝑥 = 𝑋 ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ) ) |
| 66 | 61 65 | bitrid | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ ∪ 𝐽 = ∪ 𝑥 ) ↔ ( ∪ 𝑥 = 𝑋 ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ) ) |
| 67 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } → 𝑥 ⊆ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) | |
| 68 | ssabral | ⊢ ( 𝑥 ⊆ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) | |
| 69 | 67 68 | sylib | ⊢ ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } → ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 70 | 69 | anim2i | ⊢ ( ( ∪ 𝑥 = 𝑋 ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) → ( ∪ 𝑥 = 𝑋 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 71 | 66 70 | biimtrdi | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ ∪ 𝐽 = ∪ 𝑥 ) → ( ∪ 𝑥 = 𝑋 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ) |
| 72 | 71 | reximdv | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑥 ∈ Fin ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ ∪ 𝐽 = ∪ 𝑥 ) → ∃ 𝑥 ∈ Fin ( ∪ 𝑥 = 𝑋 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ) |
| 73 | 60 72 | mpd | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑥 ∈ Fin ( ∪ 𝑥 = 𝑋 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 74 | 73 | ralrimiva | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ Fin ( ∪ 𝑥 = 𝑋 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 75 | istotbnd | ⊢ ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ Fin ( ∪ 𝑥 = 𝑋 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ) | |
| 76 | 11 74 75 | sylanbrc | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) |
| 77 | 13 76 | jca | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) ) |