This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential elimination rule of natural deduction (Rule C, explained in exlimiv ). (Contributed by Mario Carneiro, 15-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | exlimddv.1 | ⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) | |
| exlimddv.2 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | ||
| Assertion | exlimddv | ⊢ ( 𝜑 → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimddv.1 | ⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) | |
| 2 | exlimddv.2 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| 3 | 2 | ex | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
| 4 | 3 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 → 𝜒 ) ) |
| 5 | 1 4 | mpd | ⊢ ( 𝜑 → 𝜒 ) |