This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of Quine p. 44. (Contributed by NM, 1-Aug-1994) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 5-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elab.1 | ⊢ 𝐴 ∈ V | |
| elab.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | elab | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab.1 | ⊢ 𝐴 ∈ V | |
| 2 | elab.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2 | elabg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
| 4 | 1 3 | ax-mp | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |