This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | raleq | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐵 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∃ 𝑥 ∈ 𝐵 ¬ 𝜑 ) ) | |
| 2 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝜑 ) | |
| 3 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐵 𝜑 ) | |
| 4 | 1 2 3 | 3bitr3g | ⊢ ( 𝐴 = 𝐵 → ( ¬ ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐵 𝜑 ) ) |
| 5 | 4 | con4bid | ⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐵 𝜑 ) ) |