This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylsyld.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| sylsyld.2 | ⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) ) | ||
| sylsyld.3 | ⊢ ( 𝜓 → ( 𝜃 → 𝜏 ) ) | ||
| Assertion | sylsyld | ⊢ ( 𝜑 → ( 𝜒 → 𝜏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylsyld.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | sylsyld.2 | ⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) ) | |
| 3 | sylsyld.3 | ⊢ ( 𝜓 → ( 𝜃 → 𝜏 ) ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → ( 𝜃 → 𝜏 ) ) |
| 5 | 2 4 | syld | ⊢ ( 𝜑 → ( 𝜒 → 𝜏 ) ) |