This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the Cauchy sequence property in the more conventional three-quantifier form. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 14-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscau3.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| iscau3.3 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| iscau3.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| Assertion | iscau3 | ⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscau3.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | iscau3.3 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 3 | iscau3.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | iscau2 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) ) | |
| 5 | 2 4 | syl | ⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ) ) |
| 6 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 7 | ssid | ⊢ ℤ ⊆ ℤ | |
| 8 | simpr | ⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) | |
| 9 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ↔ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) | |
| 10 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ↔ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ) | |
| 11 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) | |
| 12 | 11 | fveq2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( I ‘ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) ) = ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 13 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) | |
| 14 | 13 | fveq2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( I ‘ ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) = ( I ‘ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 15 | simp1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 16 | simp2l | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) | |
| 17 | simp3l | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) | |
| 18 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ* ) | |
| 19 | 15 16 17 18 | syl3anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ* ) |
| 20 | simp2r | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) | |
| 21 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ ℝ* ) | |
| 22 | 15 17 20 21 | syl3anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ ℝ* ) |
| 23 | simp3r | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → 𝑥 ∈ ℝ ) | |
| 24 | 23 | rehalfcld | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( 𝑥 / 2 ) ∈ ℝ ) |
| 25 | 24 | rexrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( 𝑥 / 2 ) ∈ ℝ* ) |
| 26 | xlt2add | ⊢ ( ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ* ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ ℝ* ) ∧ ( ( 𝑥 / 2 ) ∈ ℝ* ∧ ( 𝑥 / 2 ) ∈ ℝ* ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( 𝑥 / 2 ) ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < ( 𝑥 / 2 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < ( ( 𝑥 / 2 ) +𝑒 ( 𝑥 / 2 ) ) ) ) | |
| 27 | 19 22 25 25 26 | syl22anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( 𝑥 / 2 ) ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < ( 𝑥 / 2 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < ( ( 𝑥 / 2 ) +𝑒 ( 𝑥 / 2 ) ) ) ) |
| 28 | 24 24 | rexaddd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝑥 / 2 ) +𝑒 ( 𝑥 / 2 ) ) = ( ( 𝑥 / 2 ) + ( 𝑥 / 2 ) ) ) |
| 29 | 23 | recnd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → 𝑥 ∈ ℂ ) |
| 30 | 29 | 2halvesd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝑥 / 2 ) + ( 𝑥 / 2 ) ) = 𝑥 ) |
| 31 | 28 30 | eqtrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝑥 / 2 ) +𝑒 ( 𝑥 / 2 ) ) = 𝑥 ) |
| 32 | 31 | breq2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < ( ( 𝑥 / 2 ) +𝑒 ( 𝑥 / 2 ) ) ↔ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 33 | xmettri | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) ) | |
| 34 | 15 16 20 17 33 | syl13anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 35 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ ℝ* ) | |
| 36 | 15 16 20 35 | syl3anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ ℝ* ) |
| 37 | 19 22 | xaddcld | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) ∈ ℝ* ) |
| 38 | 23 | rexrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → 𝑥 ∈ ℝ* ) |
| 39 | xrlelttr | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ ℝ* ∧ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) | |
| 40 | 36 37 38 39 | syl3anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 41 | 34 40 | mpand | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 42 | 32 41 | sylbid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) +𝑒 ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < ( ( 𝑥 / 2 ) +𝑒 ( 𝑥 / 2 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 43 | 27 42 | syld | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( 𝑥 / 2 ) ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < ( 𝑥 / 2 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 44 | ovex | ⊢ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ∈ V | |
| 45 | fvi | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ∈ V → ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) | |
| 46 | 44 45 | ax-mp | ⊢ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) |
| 47 | 46 | breq1i | ⊢ ( ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < ( 𝑥 / 2 ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( 𝑥 / 2 ) ) |
| 48 | ovex | ⊢ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ V | |
| 49 | fvi | ⊢ ( ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ V → ( I ‘ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) = ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) | |
| 50 | 48 49 | ax-mp | ⊢ ( I ‘ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) = ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) |
| 51 | 50 | breq1i | ⊢ ( ( I ‘ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < ( 𝑥 / 2 ) ↔ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < ( 𝑥 / 2 ) ) |
| 52 | 47 51 | anbi12i | ⊢ ( ( ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < ( 𝑥 / 2 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < ( 𝑥 / 2 ) ) ↔ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( 𝑥 / 2 ) ∧ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < ( 𝑥 / 2 ) ) ) |
| 53 | ovex | ⊢ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ V | |
| 54 | fvi | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ∈ V → ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) | |
| 55 | 53 54 | ax-mp | ⊢ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) |
| 56 | 55 | breq1i | ⊢ ( ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) |
| 57 | 43 52 56 | 3imtr4g | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ∧ 𝑥 ∈ ℝ ) ) → ( ( ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < ( 𝑥 / 2 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑗 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < ( 𝑥 / 2 ) ) → ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 58 | 7 8 9 10 12 14 57 | cau3lem | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 59 | 6 58 | syl | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 60 | 46 | breq1i | ⊢ ( ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) |
| 61 | 60 | anbi2i | ⊢ ( ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) |
| 62 | df-3an | ⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) | |
| 63 | 61 62 | bitr4i | ⊢ ( ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) |
| 64 | 63 | ralbii | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) |
| 65 | 64 | rexbii | ⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) |
| 66 | 65 | ralbii | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) |
| 67 | 56 | ralbii | ⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) |
| 68 | 67 | anbi2i | ⊢ ( ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 69 | df-3an | ⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) | |
| 70 | 68 69 | bitr4i | ⊢ ( ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 71 | 70 | ralbii | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 72 | 71 | rexbii | ⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 73 | 72 | ralbii | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( I ‘ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 74 | 59 66 73 | 3bitr3g | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 75 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → 𝑀 ∈ ℤ ) |
| 76 | 1 | rexuz3 | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 77 | 75 76 | syl | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 78 | 77 | ralbidv | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 79 | 74 78 | bitr4d | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 80 | 79 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑥 ) ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) ) |
| 81 | 5 80 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) ) |