This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006) (Proof shortened by SN, 22-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | abssdv.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝑥 ∈ 𝐴 ) ) | |
| Assertion | abssdv | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssdv.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝑥 ∈ 𝐴 ) ) | |
| 2 | 1 | ss2abdv | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } ⊆ { 𝑥 ∣ 𝑥 ∈ 𝐴 } ) |
| 3 | abid1 | ⊢ 𝐴 = { 𝑥 ∣ 𝑥 ∈ 𝐴 } | |
| 4 | 2 3 | sseqtrrdi | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } ⊆ 𝐴 ) |