This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | albii.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| Assertion | albii | ⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albii.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | albi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜓 ) ) | |
| 3 | 2 1 | mpg | ⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜓 ) |