This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the distance function of a metric space. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mettri2 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) + ( 𝐶 𝐷 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 2 | xmettri2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) ) |
| 4 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐶 𝐷 𝐴 ) ∈ ℝ ) | |
| 5 | 4 | 3adant3r3 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐶 𝐷 𝐴 ) ∈ ℝ ) |
| 6 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐶 𝐷 𝐵 ) ∈ ℝ ) | |
| 7 | 6 | 3adant3r2 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐶 𝐷 𝐵 ) ∈ ℝ ) |
| 8 | 5 7 | rexaddd | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐶 𝐷 𝐴 ) +𝑒 ( 𝐶 𝐷 𝐵 ) ) = ( ( 𝐶 𝐷 𝐴 ) + ( 𝐶 𝐷 𝐵 ) ) ) |
| 9 | 3 8 | breqtrd | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) + ( 𝐶 𝐷 𝐵 ) ) ) |