This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass of intersection. Theorem 2.8(vii) of Monk1 p. 26. (Contributed by NM, 15-Jun-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssin | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ↔ 𝐴 ⊆ ( 𝐵 ∩ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) | |
| 2 | 1 | imbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 3 | 2 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 4 | jcab | ⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) ) | |
| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) ) |
| 6 | 19.26 | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) ) | |
| 7 | 3 5 6 | 3bitrri | ⊢ ( ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
| 8 | df-ss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 9 | df-ss | ⊢ ( 𝐴 ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) | |
| 10 | 8 9 | anbi12i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) ) |
| 11 | df-ss | ⊢ ( 𝐴 ⊆ ( 𝐵 ∩ 𝐶 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∩ 𝐶 ) ) ) | |
| 12 | 7 10 11 | 3bitr4i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ↔ 𝐴 ⊆ ( 𝐵 ∩ 𝐶 ) ) |