This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a topology is compact and a collection of closed sets has the finite intersection property, its intersection is nonempty. (Contributed by Jeff Hankins, 25-Aug-2009) (Proof shortened by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cmpfi | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Comp ↔ ∀ 𝑥 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑥 ) → ∩ 𝑥 ≠ ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 𝐽 → 𝑦 ⊆ 𝐽 ) | |
| 2 | 0ss | ⊢ ∅ ⊆ 𝑦 | |
| 3 | 0fi | ⊢ ∅ ∈ Fin | |
| 4 | elfpw | ⊢ ( ∅ ∈ ( 𝒫 𝑦 ∩ Fin ) ↔ ( ∅ ⊆ 𝑦 ∧ ∅ ∈ Fin ) ) | |
| 5 | 2 3 4 | mpbir2an | ⊢ ∅ ∈ ( 𝒫 𝑦 ∩ Fin ) |
| 6 | simprr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 = ∅ ∧ ∪ 𝐽 = ∪ 𝑦 ) ) → ∪ 𝐽 = ∪ 𝑦 ) | |
| 7 | simprl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 = ∅ ∧ ∪ 𝐽 = ∪ 𝑦 ) ) → 𝑦 = ∅ ) | |
| 8 | 7 | unieqd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 = ∅ ∧ ∪ 𝐽 = ∪ 𝑦 ) ) → ∪ 𝑦 = ∪ ∅ ) |
| 9 | 6 8 | eqtrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 = ∅ ∧ ∪ 𝐽 = ∪ 𝑦 ) ) → ∪ 𝐽 = ∪ ∅ ) |
| 10 | unieq | ⊢ ( 𝑧 = ∅ → ∪ 𝑧 = ∪ ∅ ) | |
| 11 | 10 | rspceeqv | ⊢ ( ( ∅ ∈ ( 𝒫 𝑦 ∩ Fin ) ∧ ∪ 𝐽 = ∪ ∅ ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) |
| 12 | 5 9 11 | sylancr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 = ∅ ∧ ∪ 𝐽 = ∪ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) |
| 13 | 12 | expr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 = ∅ ) → ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 14 | vn0 | ⊢ V ≠ ∅ | |
| 15 | iineq1 | ⊢ ( 𝑦 = ∅ → ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∩ 𝑟 ∈ ∅ ( ∪ 𝐽 ∖ 𝑟 ) ) | |
| 16 | 15 | adantl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 = ∅ ) → ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∩ 𝑟 ∈ ∅ ( ∪ 𝐽 ∖ 𝑟 ) ) |
| 17 | 0iin | ⊢ ∩ 𝑟 ∈ ∅ ( ∪ 𝐽 ∖ 𝑟 ) = V | |
| 18 | 16 17 | eqtrdi | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 = ∅ ) → ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = V ) |
| 19 | 18 | eqeq1d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 = ∅ ) → ( ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∅ ↔ V = ∅ ) ) |
| 20 | 19 | necon3bbid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 = ∅ ) → ( ¬ ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∅ ↔ V ≠ ∅ ) ) |
| 21 | 14 20 | mpbiri | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 = ∅ ) → ¬ ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∅ ) |
| 22 | 21 | pm2.21d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 = ∅ ) → ( ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∅ → ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) ) |
| 23 | 13 22 | 2thd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 = ∅ ) → ( ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ↔ ( ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∅ → ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) ) ) |
| 24 | uniss | ⊢ ( 𝑦 ⊆ 𝐽 → ∪ 𝑦 ⊆ ∪ 𝐽 ) | |
| 25 | 24 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ∪ 𝑦 ⊆ ∪ 𝐽 ) |
| 26 | eqss | ⊢ ( ∪ 𝑦 = ∪ 𝐽 ↔ ( ∪ 𝑦 ⊆ ∪ 𝐽 ∧ ∪ 𝐽 ⊆ ∪ 𝑦 ) ) | |
| 27 | 26 | baib | ⊢ ( ∪ 𝑦 ⊆ ∪ 𝐽 → ( ∪ 𝑦 = ∪ 𝐽 ↔ ∪ 𝐽 ⊆ ∪ 𝑦 ) ) |
| 28 | 25 27 | syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ∪ 𝑦 = ∪ 𝐽 ↔ ∪ 𝐽 ⊆ ∪ 𝑦 ) ) |
| 29 | eqcom | ⊢ ( ∪ 𝑦 = ∪ 𝐽 ↔ ∪ 𝐽 = ∪ 𝑦 ) | |
| 30 | ssdif0 | ⊢ ( ∪ 𝐽 ⊆ ∪ 𝑦 ↔ ( ∪ 𝐽 ∖ ∪ 𝑦 ) = ∅ ) | |
| 31 | 28 29 30 | 3bitr3g | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ∪ 𝐽 = ∪ 𝑦 ↔ ( ∪ 𝐽 ∖ ∪ 𝑦 ) = ∅ ) ) |
| 32 | iindif2 | ⊢ ( 𝑦 ≠ ∅ → ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ( ∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑦 𝑟 ) ) | |
| 33 | 32 | adantl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ( ∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑦 𝑟 ) ) |
| 34 | uniiun | ⊢ ∪ 𝑦 = ∪ 𝑟 ∈ 𝑦 𝑟 | |
| 35 | 34 | difeq2i | ⊢ ( ∪ 𝐽 ∖ ∪ 𝑦 ) = ( ∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑦 𝑟 ) |
| 36 | 33 35 | eqtr4di | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ( ∪ 𝐽 ∖ ∪ 𝑦 ) ) |
| 37 | 36 | eqeq1d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∅ ↔ ( ∪ 𝐽 ∖ ∪ 𝑦 ) = ∅ ) ) |
| 38 | 31 37 | bitr4d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ∪ 𝐽 = ∪ 𝑦 ↔ ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∅ ) ) |
| 39 | imassrn | ⊢ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ⊆ ran ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) | |
| 40 | df-ima | ⊢ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) = ran ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ↾ 𝑦 ) | |
| 41 | resmpt | ⊢ ( 𝑦 ⊆ 𝐽 → ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ↾ 𝑦 ) = ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) | |
| 42 | 41 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) → ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ↾ 𝑦 ) = ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) |
| 43 | 42 | rneqd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) → ran ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ↾ 𝑦 ) = ran ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) |
| 44 | 40 43 | eqtrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) → ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) = ran ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) |
| 45 | 44 | ad2antrr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ) → ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) = ran ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) |
| 46 | 39 45 | sseqtrrid | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ) → ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ⊆ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) |
| 47 | funmpt | ⊢ Fun ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) | |
| 48 | elinel2 | ⊢ ( 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) → 𝑧 ∈ Fin ) | |
| 49 | 48 | adantl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ) → 𝑧 ∈ Fin ) |
| 50 | imafi | ⊢ ( ( Fun ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ∧ 𝑧 ∈ Fin ) → ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ∈ Fin ) | |
| 51 | 47 49 50 | sylancr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ) → ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ∈ Fin ) |
| 52 | elfpw | ⊢ ( ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ∈ ( 𝒫 ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∩ Fin ) ↔ ( ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ⊆ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∧ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ∈ Fin ) ) | |
| 53 | 46 51 52 | sylanbrc | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ) → ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ∈ ( 𝒫 ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∩ Fin ) ) |
| 54 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 55 | 54 | topopn | ⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽 ) |
| 56 | 55 | difexd | ⊢ ( 𝐽 ∈ Top → ( ∪ 𝐽 ∖ 𝑟 ) ∈ V ) |
| 57 | 56 | ralrimivw | ⊢ ( 𝐽 ∈ Top → ∀ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) ∈ V ) |
| 58 | eqid | ⊢ ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) = ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) | |
| 59 | 58 | fnmpt | ⊢ ( ∀ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) ∈ V → ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) Fn 𝑦 ) |
| 60 | 57 59 | syl | ⊢ ( 𝐽 ∈ Top → ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) Fn 𝑦 ) |
| 61 | 60 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑤 ∈ ( 𝒫 ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∩ Fin ) ) → ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) Fn 𝑦 ) |
| 62 | simpr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑤 ∈ ( 𝒫 ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∩ Fin ) ) → 𝑤 ∈ ( 𝒫 ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∩ Fin ) ) | |
| 63 | elfpw | ⊢ ( 𝑤 ∈ ( 𝒫 ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∩ Fin ) ↔ ( 𝑤 ⊆ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∧ 𝑤 ∈ Fin ) ) | |
| 64 | 62 63 | sylib | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑤 ∈ ( 𝒫 ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∩ Fin ) ) → ( 𝑤 ⊆ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∧ 𝑤 ∈ Fin ) ) |
| 65 | 64 | simpld | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑤 ∈ ( 𝒫 ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∩ Fin ) ) → 𝑤 ⊆ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) |
| 66 | 44 | ad2antrr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑤 ∈ ( 𝒫 ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∩ Fin ) ) → ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) = ran ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) |
| 67 | 65 66 | sseqtrd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑤 ∈ ( 𝒫 ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∩ Fin ) ) → 𝑤 ⊆ ran ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) |
| 68 | 64 | simprd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑤 ∈ ( 𝒫 ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∩ Fin ) ) → 𝑤 ∈ Fin ) |
| 69 | fipreima | ⊢ ( ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) Fn 𝑦 ∧ 𝑤 ⊆ ran ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ∧ 𝑤 ∈ Fin ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) = 𝑤 ) | |
| 70 | 61 67 68 69 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑤 ∈ ( 𝒫 ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∩ Fin ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) = 𝑤 ) |
| 71 | eqcom | ⊢ ( ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) = 𝑤 ↔ 𝑤 = ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) | |
| 72 | 71 | rexbii | ⊢ ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) = 𝑤 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑤 = ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) |
| 73 | 70 72 | sylib | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑤 ∈ ( 𝒫 ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∩ Fin ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑤 = ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) |
| 74 | simpr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑤 = ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) → 𝑤 = ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) | |
| 75 | 74 | inteqd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑤 = ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) → ∩ 𝑤 = ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) |
| 76 | 75 | eqeq2d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑤 = ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) → ( ∅ = ∩ 𝑤 ↔ ∅ = ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) ) |
| 77 | 53 73 76 | rexxfrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ∃ 𝑤 ∈ ( 𝒫 ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∩ Fin ) ∅ = ∩ 𝑤 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∅ = ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) ) |
| 78 | 0ex | ⊢ ∅ ∈ V | |
| 79 | imassrn | ⊢ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ⊆ ran ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) | |
| 80 | eqid | ⊢ ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) = ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) | |
| 81 | 54 80 | opncldf1 | ⊢ ( 𝐽 ∈ Top → ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) : 𝐽 –1-1-onto→ ( Clsd ‘ 𝐽 ) ∧ ◡ ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) = ( 𝑣 ∈ ( Clsd ‘ 𝐽 ) ↦ ( ∪ 𝐽 ∖ 𝑣 ) ) ) ) |
| 82 | 81 | simpld | ⊢ ( 𝐽 ∈ Top → ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) : 𝐽 –1-1-onto→ ( Clsd ‘ 𝐽 ) ) |
| 83 | f1ofo | ⊢ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) : 𝐽 –1-1-onto→ ( Clsd ‘ 𝐽 ) → ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) : 𝐽 –onto→ ( Clsd ‘ 𝐽 ) ) | |
| 84 | 82 83 | syl | ⊢ ( 𝐽 ∈ Top → ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) : 𝐽 –onto→ ( Clsd ‘ 𝐽 ) ) |
| 85 | forn | ⊢ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) : 𝐽 –onto→ ( Clsd ‘ 𝐽 ) → ran ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) = ( Clsd ‘ 𝐽 ) ) | |
| 86 | 84 85 | syl | ⊢ ( 𝐽 ∈ Top → ran ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) = ( Clsd ‘ 𝐽 ) ) |
| 87 | 79 86 | sseqtrid | ⊢ ( 𝐽 ∈ Top → ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ⊆ ( Clsd ‘ 𝐽 ) ) |
| 88 | fvex | ⊢ ( Clsd ‘ 𝐽 ) ∈ V | |
| 89 | 88 | elpw2 | ⊢ ( ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∈ 𝒫 ( Clsd ‘ 𝐽 ) ↔ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ⊆ ( Clsd ‘ 𝐽 ) ) |
| 90 | 87 89 | sylibr | ⊢ ( 𝐽 ∈ Top → ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∈ 𝒫 ( Clsd ‘ 𝐽 ) ) |
| 91 | 90 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∈ 𝒫 ( Clsd ‘ 𝐽 ) ) |
| 92 | elfi | ⊢ ( ( ∅ ∈ V ∧ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∈ 𝒫 ( Clsd ‘ 𝐽 ) ) → ( ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ↔ ∃ 𝑤 ∈ ( 𝒫 ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∩ Fin ) ∅ = ∩ 𝑤 ) ) | |
| 93 | 78 91 92 | sylancr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ↔ ∃ 𝑤 ∈ ( 𝒫 ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∩ Fin ) ∅ = ∩ 𝑤 ) ) |
| 94 | inundif | ⊢ ( ( ( 𝒫 𝑦 ∩ Fin ) ∩ { ∅ } ) ∪ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) = ( 𝒫 𝑦 ∩ Fin ) | |
| 95 | 94 | rexeqi | ⊢ ( ∃ 𝑧 ∈ ( ( ( 𝒫 𝑦 ∩ Fin ) ∩ { ∅ } ) ∪ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) ∪ 𝐽 = ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) |
| 96 | rexun | ⊢ ( ∃ 𝑧 ∈ ( ( ( 𝒫 𝑦 ∩ Fin ) ∩ { ∅ } ) ∪ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) ∪ 𝐽 = ∪ 𝑧 ↔ ( ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∩ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ∨ ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ) ) | |
| 97 | 95 96 | bitr3i | ⊢ ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ↔ ( ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∩ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ∨ ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 98 | elinel2 | ⊢ ( 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∩ { ∅ } ) → 𝑧 ∈ { ∅ } ) | |
| 99 | elsni | ⊢ ( 𝑧 ∈ { ∅ } → 𝑧 = ∅ ) | |
| 100 | 98 99 | syl | ⊢ ( 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∩ { ∅ } ) → 𝑧 = ∅ ) |
| 101 | 100 | unieqd | ⊢ ( 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∩ { ∅ } ) → ∪ 𝑧 = ∪ ∅ ) |
| 102 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 103 | 101 102 | eqtrdi | ⊢ ( 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∩ { ∅ } ) → ∪ 𝑧 = ∅ ) |
| 104 | 103 | eqeq2d | ⊢ ( 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∩ { ∅ } ) → ( ∪ 𝐽 = ∪ 𝑧 ↔ ∪ 𝐽 = ∅ ) ) |
| 105 | 104 | biimpd | ⊢ ( 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∩ { ∅ } ) → ( ∪ 𝐽 = ∪ 𝑧 → ∪ 𝐽 = ∅ ) ) |
| 106 | 105 | rexlimiv | ⊢ ( ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∩ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 → ∪ 𝐽 = ∅ ) |
| 107 | ssidd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 ≠ ∅ ∧ ∪ 𝐽 = ∅ ) ) → 𝑦 ⊆ 𝑦 ) | |
| 108 | simprr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 ≠ ∅ ∧ ∪ 𝐽 = ∅ ) ) → ∪ 𝐽 = ∅ ) | |
| 109 | 0ss | ⊢ ∅ ⊆ ∪ 𝑦 | |
| 110 | 108 109 | eqsstrdi | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 ≠ ∅ ∧ ∪ 𝐽 = ∅ ) ) → ∪ 𝐽 ⊆ ∪ 𝑦 ) |
| 111 | 24 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 ≠ ∅ ∧ ∪ 𝐽 = ∅ ) ) → ∪ 𝑦 ⊆ ∪ 𝐽 ) |
| 112 | 110 111 | eqssd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 ≠ ∅ ∧ ∪ 𝐽 = ∅ ) ) → ∪ 𝐽 = ∪ 𝑦 ) |
| 113 | 112 108 | eqtr3d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 ≠ ∅ ∧ ∪ 𝐽 = ∅ ) ) → ∪ 𝑦 = ∅ ) |
| 114 | 113 3 | eqeltrdi | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 ≠ ∅ ∧ ∪ 𝐽 = ∅ ) ) → ∪ 𝑦 ∈ Fin ) |
| 115 | pwfi | ⊢ ( ∪ 𝑦 ∈ Fin ↔ 𝒫 ∪ 𝑦 ∈ Fin ) | |
| 116 | 114 115 | sylib | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 ≠ ∅ ∧ ∪ 𝐽 = ∅ ) ) → 𝒫 ∪ 𝑦 ∈ Fin ) |
| 117 | pwuni | ⊢ 𝑦 ⊆ 𝒫 ∪ 𝑦 | |
| 118 | ssfi | ⊢ ( ( 𝒫 ∪ 𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝒫 ∪ 𝑦 ) → 𝑦 ∈ Fin ) | |
| 119 | 116 117 118 | sylancl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 ≠ ∅ ∧ ∪ 𝐽 = ∅ ) ) → 𝑦 ∈ Fin ) |
| 120 | elfpw | ⊢ ( 𝑦 ∈ ( 𝒫 𝑦 ∩ Fin ) ↔ ( 𝑦 ⊆ 𝑦 ∧ 𝑦 ∈ Fin ) ) | |
| 121 | 107 119 120 | sylanbrc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 ≠ ∅ ∧ ∪ 𝐽 = ∅ ) ) → 𝑦 ∈ ( 𝒫 𝑦 ∩ Fin ) ) |
| 122 | simprl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 ≠ ∅ ∧ ∪ 𝐽 = ∅ ) ) → 𝑦 ≠ ∅ ) | |
| 123 | eldifsn | ⊢ ( 𝑦 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ↔ ( 𝑦 ∈ ( 𝒫 𝑦 ∩ Fin ) ∧ 𝑦 ≠ ∅ ) ) | |
| 124 | 121 122 123 | sylanbrc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 ≠ ∅ ∧ ∪ 𝐽 = ∅ ) ) → 𝑦 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) |
| 125 | unieq | ⊢ ( 𝑧 = 𝑦 → ∪ 𝑧 = ∪ 𝑦 ) | |
| 126 | 125 | rspceeqv | ⊢ ( ( 𝑦 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∧ ∪ 𝐽 = ∪ 𝑦 ) → ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ) |
| 127 | 124 112 126 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ ( 𝑦 ≠ ∅ ∧ ∪ 𝐽 = ∅ ) ) → ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ) |
| 128 | 127 | expr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ∪ 𝐽 = ∅ → ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 129 | 106 128 | syl5 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∩ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 → ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 130 | idd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 → ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ) ) | |
| 131 | 129 130 | jaod | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ( ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∩ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ∨ ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ) → ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 132 | olc | ⊢ ( ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 → ( ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∩ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ∨ ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ) ) | |
| 133 | 131 132 | impbid1 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ( ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∩ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ∨ ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ) ↔ ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 134 | 97 133 | bitrid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 135 | eldifi | ⊢ ( 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) → 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ) | |
| 136 | 135 | adantl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ) |
| 137 | elfpw | ⊢ ( 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ↔ ( 𝑧 ⊆ 𝑦 ∧ 𝑧 ∈ Fin ) ) | |
| 138 | 136 137 | sylib | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → ( 𝑧 ⊆ 𝑦 ∧ 𝑧 ∈ Fin ) ) |
| 139 | 138 | simpld | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → 𝑧 ⊆ 𝑦 ) |
| 140 | simpllr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → 𝑦 ⊆ 𝐽 ) | |
| 141 | 139 140 | sstrd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → 𝑧 ⊆ 𝐽 ) |
| 142 | 141 | unissd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → ∪ 𝑧 ⊆ ∪ 𝐽 ) |
| 143 | eqss | ⊢ ( ∪ 𝑧 = ∪ 𝐽 ↔ ( ∪ 𝑧 ⊆ ∪ 𝐽 ∧ ∪ 𝐽 ⊆ ∪ 𝑧 ) ) | |
| 144 | 143 | baib | ⊢ ( ∪ 𝑧 ⊆ ∪ 𝐽 → ( ∪ 𝑧 = ∪ 𝐽 ↔ ∪ 𝐽 ⊆ ∪ 𝑧 ) ) |
| 145 | 142 144 | syl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → ( ∪ 𝑧 = ∪ 𝐽 ↔ ∪ 𝐽 ⊆ ∪ 𝑧 ) ) |
| 146 | eqcom | ⊢ ( ∪ 𝑧 = ∪ 𝐽 ↔ ∪ 𝐽 = ∪ 𝑧 ) | |
| 147 | ssdif0 | ⊢ ( ∪ 𝐽 ⊆ ∪ 𝑧 ↔ ( ∪ 𝐽 ∖ ∪ 𝑧 ) = ∅ ) | |
| 148 | eqcom | ⊢ ( ( ∪ 𝐽 ∖ ∪ 𝑧 ) = ∅ ↔ ∅ = ( ∪ 𝐽 ∖ ∪ 𝑧 ) ) | |
| 149 | 147 148 | bitri | ⊢ ( ∪ 𝐽 ⊆ ∪ 𝑧 ↔ ∅ = ( ∪ 𝐽 ∖ ∪ 𝑧 ) ) |
| 150 | 145 146 149 | 3bitr3g | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → ( ∪ 𝐽 = ∪ 𝑧 ↔ ∅ = ( ∪ 𝐽 ∖ ∪ 𝑧 ) ) ) |
| 151 | df-ima | ⊢ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) = ran ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ↾ 𝑧 ) | |
| 152 | 139 | resmptd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ↾ 𝑧 ) = ( 𝑟 ∈ 𝑧 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) |
| 153 | 152 | rneqd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → ran ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ↾ 𝑧 ) = ran ( 𝑟 ∈ 𝑧 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) |
| 154 | 151 153 | eqtrid | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) = ran ( 𝑟 ∈ 𝑧 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) |
| 155 | 154 | inteqd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) = ∩ ran ( 𝑟 ∈ 𝑧 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) |
| 156 | 56 | ralrimivw | ⊢ ( 𝐽 ∈ Top → ∀ 𝑟 ∈ 𝑧 ( ∪ 𝐽 ∖ 𝑟 ) ∈ V ) |
| 157 | 156 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → ∀ 𝑟 ∈ 𝑧 ( ∪ 𝐽 ∖ 𝑟 ) ∈ V ) |
| 158 | dfiin3g | ⊢ ( ∀ 𝑟 ∈ 𝑧 ( ∪ 𝐽 ∖ 𝑟 ) ∈ V → ∩ 𝑟 ∈ 𝑧 ( ∪ 𝐽 ∖ 𝑟 ) = ∩ ran ( 𝑟 ∈ 𝑧 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) | |
| 159 | 157 158 | syl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → ∩ 𝑟 ∈ 𝑧 ( ∪ 𝐽 ∖ 𝑟 ) = ∩ ran ( 𝑟 ∈ 𝑧 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) |
| 160 | eldifsni | ⊢ ( 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) → 𝑧 ≠ ∅ ) | |
| 161 | 160 | adantl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → 𝑧 ≠ ∅ ) |
| 162 | iindif2 | ⊢ ( 𝑧 ≠ ∅ → ∩ 𝑟 ∈ 𝑧 ( ∪ 𝐽 ∖ 𝑟 ) = ( ∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑧 𝑟 ) ) | |
| 163 | 161 162 | syl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → ∩ 𝑟 ∈ 𝑧 ( ∪ 𝐽 ∖ 𝑟 ) = ( ∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑧 𝑟 ) ) |
| 164 | 155 159 163 | 3eqtr2d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) = ( ∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑧 𝑟 ) ) |
| 165 | uniiun | ⊢ ∪ 𝑧 = ∪ 𝑟 ∈ 𝑧 𝑟 | |
| 166 | 165 | difeq2i | ⊢ ( ∪ 𝐽 ∖ ∪ 𝑧 ) = ( ∪ 𝐽 ∖ ∪ 𝑟 ∈ 𝑧 𝑟 ) |
| 167 | 164 166 | eqtr4di | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) = ( ∪ 𝐽 ∖ ∪ 𝑧 ) ) |
| 168 | 167 | eqeq2d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → ( ∅ = ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ↔ ∅ = ( ∪ 𝐽 ∖ ∪ 𝑧 ) ) ) |
| 169 | 150 168 | bitr4d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) → ( ∪ 𝐽 = ∪ 𝑧 ↔ ∅ = ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) ) |
| 170 | 169 | rexbidva | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∪ 𝐽 = ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∅ = ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) ) |
| 171 | 134 170 | bitrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∅ = ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) ) |
| 172 | imaeq2 | ⊢ ( 𝑧 = ∅ → ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) = ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ ∅ ) ) | |
| 173 | ima0 | ⊢ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ ∅ ) = ∅ | |
| 174 | 172 173 | eqtrdi | ⊢ ( 𝑧 = ∅ → ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) = ∅ ) |
| 175 | 174 | inteqd | ⊢ ( 𝑧 = ∅ → ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) = ∩ ∅ ) |
| 176 | int0 | ⊢ ∩ ∅ = V | |
| 177 | 175 176 | eqtrdi | ⊢ ( 𝑧 = ∅ → ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) = V ) |
| 178 | 177 | neeq1d | ⊢ ( 𝑧 = ∅ → ( ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ≠ ∅ ↔ V ≠ ∅ ) ) |
| 179 | 14 178 | mpbiri | ⊢ ( 𝑧 = ∅ → ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ≠ ∅ ) |
| 180 | 179 | necomd | ⊢ ( 𝑧 = ∅ → ∅ ≠ ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) |
| 181 | 180 | necon2i | ⊢ ( ∅ = ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) → 𝑧 ≠ ∅ ) |
| 182 | eldifsn | ⊢ ( 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ↔ ( 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∧ 𝑧 ≠ ∅ ) ) | |
| 183 | 182 | rbaibr | ⊢ ( 𝑧 ≠ ∅ → ( 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ↔ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) ) |
| 184 | 181 183 | syl | ⊢ ( ∅ = ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) → ( 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ↔ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ) ) |
| 185 | 184 | pm5.32ri | ⊢ ( ( 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∧ ∅ = ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) ↔ ( 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∧ ∅ = ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) ) |
| 186 | 185 | rexbii2 | ⊢ ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∅ = ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ↔ ∃ 𝑧 ∈ ( ( 𝒫 𝑦 ∩ Fin ) ∖ { ∅ } ) ∅ = ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) |
| 187 | 171 186 | bitr4di | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∅ = ∩ ( ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑧 ) ) ) |
| 188 | 77 93 187 | 3bitr4rd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ↔ ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) ) |
| 189 | 38 188 | imbi12d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑦 ≠ ∅ ) → ( ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ↔ ( ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∅ → ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) ) ) |
| 190 | 23 189 | pm2.61dane | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) → ( ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ↔ ( ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∅ → ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) ) ) |
| 191 | 57 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) → ∀ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) ∈ V ) |
| 192 | dfiin3g | ⊢ ( ∀ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) ∈ V → ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∩ ran ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) | |
| 193 | 191 192 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) → ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∩ ran ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) |
| 194 | 44 | inteqd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) → ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) = ∩ ran ( 𝑟 ∈ 𝑦 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) |
| 195 | 193 194 | eqtr4d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) → ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) |
| 196 | 195 | eqeq1d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) → ( ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∅ ↔ ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) = ∅ ) ) |
| 197 | nne | ⊢ ( ¬ ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ≠ ∅ ↔ ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) = ∅ ) | |
| 198 | 196 197 | bitr4di | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) → ( ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∅ ↔ ¬ ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ≠ ∅ ) ) |
| 199 | 198 | imbi1d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) → ( ( ∩ 𝑟 ∈ 𝑦 ( ∪ 𝐽 ∖ 𝑟 ) = ∅ → ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) ↔ ( ¬ ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ≠ ∅ → ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) ) ) |
| 200 | 190 199 | bitrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) → ( ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ↔ ( ¬ ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ≠ ∅ → ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) ) ) |
| 201 | con1b | ⊢ ( ( ¬ ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ≠ ∅ → ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) ↔ ( ¬ ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) → ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ≠ ∅ ) ) | |
| 202 | 200 201 | bitrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) → ( ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ↔ ( ¬ ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) → ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ≠ ∅ ) ) ) |
| 203 | 1 202 | sylan2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝐽 ) → ( ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ↔ ( ¬ ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) → ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ≠ ∅ ) ) ) |
| 204 | 203 | ralbidva | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝒫 𝐽 ( ¬ ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) → ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ≠ ∅ ) ) ) |
| 205 | 54 | iscmp | ⊢ ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ) ) |
| 206 | 205 | baib | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Comp ↔ ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ) ) |
| 207 | 90 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝐽 ) → ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ∈ 𝒫 ( Clsd ‘ 𝐽 ) ) |
| 208 | simpl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ) → 𝐽 ∈ Top ) | |
| 209 | funmpt | ⊢ Fun ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) | |
| 210 | 209 | a1i | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ) → Fun ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ) |
| 211 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 ( Clsd ‘ 𝐽 ) → 𝑥 ⊆ ( Clsd ‘ 𝐽 ) ) | |
| 212 | foima | ⊢ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) : 𝐽 –onto→ ( Clsd ‘ 𝐽 ) → ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝐽 ) = ( Clsd ‘ 𝐽 ) ) | |
| 213 | 84 212 | syl | ⊢ ( 𝐽 ∈ Top → ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝐽 ) = ( Clsd ‘ 𝐽 ) ) |
| 214 | 213 | sseq2d | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ⊆ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝐽 ) ↔ 𝑥 ⊆ ( Clsd ‘ 𝐽 ) ) ) |
| 215 | 211 214 | imbitrrid | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ 𝒫 ( Clsd ‘ 𝐽 ) → 𝑥 ⊆ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝐽 ) ) ) |
| 216 | 215 | imp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ) → 𝑥 ⊆ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝐽 ) ) |
| 217 | ssimaexg | ⊢ ( ( 𝐽 ∈ Top ∧ Fun ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) ∧ 𝑥 ⊆ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝐽 ) ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐽 ∧ 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) | |
| 218 | 208 210 216 217 | syl3anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐽 ∧ 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) |
| 219 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝒫 𝐽 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝒫 𝐽 ∧ 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) | |
| 220 | velpw | ⊢ ( 𝑦 ∈ 𝒫 𝐽 ↔ 𝑦 ⊆ 𝐽 ) | |
| 221 | 220 | anbi1i | ⊢ ( ( 𝑦 ∈ 𝒫 𝐽 ∧ 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ↔ ( 𝑦 ⊆ 𝐽 ∧ 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) |
| 222 | 221 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝒫 𝐽 ∧ 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ↔ ∃ 𝑦 ( 𝑦 ⊆ 𝐽 ∧ 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) |
| 223 | 219 222 | bitri | ⊢ ( ∃ 𝑦 ∈ 𝒫 𝐽 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ⊆ 𝐽 ∧ 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) |
| 224 | 218 223 | sylibr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ) → ∃ 𝑦 ∈ 𝒫 𝐽 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) |
| 225 | simpr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) → 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) | |
| 226 | 225 | fveq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) → ( fi ‘ 𝑥 ) = ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) |
| 227 | 226 | eleq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) → ( ∅ ∈ ( fi ‘ 𝑥 ) ↔ ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) ) |
| 228 | 227 | notbid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) → ( ¬ ∅ ∈ ( fi ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) ) ) |
| 229 | 225 | inteqd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) → ∩ 𝑥 = ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) |
| 230 | 229 | neeq1d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) → ( ∩ 𝑥 ≠ ∅ ↔ ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ≠ ∅ ) ) |
| 231 | 228 230 | imbi12d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 = ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) → ( ( ¬ ∅ ∈ ( fi ‘ 𝑥 ) → ∩ 𝑥 ≠ ∅ ) ↔ ( ¬ ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) → ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ≠ ∅ ) ) ) |
| 232 | 207 224 231 | ralxfrd | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑥 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑥 ) → ∩ 𝑥 ≠ ∅ ) ↔ ∀ 𝑦 ∈ 𝒫 𝐽 ( ¬ ∅ ∈ ( fi ‘ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ) → ∩ ( ( 𝑟 ∈ 𝐽 ↦ ( ∪ 𝐽 ∖ 𝑟 ) ) “ 𝑦 ) ≠ ∅ ) ) ) |
| 233 | 204 206 232 | 3bitr4d | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Comp ↔ ∀ 𝑥 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑥 ) → ∩ 𝑥 ≠ ∅ ) ) ) |