This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003) (Proof shortened by Wolf Lammen, 5-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nrexdv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝜓 ) | |
| Assertion | nrexdv | ⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ 𝐴 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrexdv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝜓 ) | |
| 2 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ) |
| 3 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝜓 ) | |
| 4 | 2 3 | sylib | ⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ 𝐴 𝜓 ) |