This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the binary relation "sequence F converges to point P " in a metric space using an arbitrary upper set of integers. This version of lmmbr2 presupposes that F is a function. (Contributed by NM, 20-Jul-2007) (Revised by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmmbr.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| lmmbr.3 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| lmmbr3.5 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| lmmbr3.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| lmmbrf.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| lmmbrf.8 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) | ||
| Assertion | lmmbrf | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐴 𝐷 𝑃 ) < 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmmbr.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | lmmbr.3 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 3 | lmmbr3.5 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 4 | lmmbr3.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 5 | lmmbrf.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 6 | lmmbrf.8 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) | |
| 7 | elfvdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) | |
| 8 | cnex | ⊢ ℂ ∈ V | |
| 9 | 7 8 | jctir | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) ) |
| 10 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 11 | zsscn | ⊢ ℤ ⊆ ℂ | |
| 12 | 10 11 | sstri | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℂ |
| 13 | 3 12 | eqsstri | ⊢ 𝑍 ⊆ ℂ |
| 14 | 13 | jctr | ⊢ ( 𝐹 : 𝑍 ⟶ 𝑋 → ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑍 ⊆ ℂ ) ) |
| 15 | elpm2r | ⊢ ( ( ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) ∧ ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑍 ⊆ ℂ ) ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) | |
| 16 | 9 14 15 | syl2an | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
| 17 | 2 6 16 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
| 18 | 17 | biantrurd | ⊢ ( 𝜑 → ( ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) ) ) |
| 19 | 3 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 20 | 19 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 21 | 5 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) = ( 𝐴 𝐷 𝑃 ) ) |
| 22 | 21 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ↔ ( 𝐴 𝐷 𝑃 ) < 𝑥 ) ) |
| 23 | 22 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ↔ ( 𝐴 𝐷 𝑃 ) < 𝑥 ) ) |
| 24 | 6 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝑍 ) |
| 25 | 24 | eleq2d | ⊢ ( 𝜑 → ( 𝑘 ∈ dom 𝐹 ↔ 𝑘 ∈ 𝑍 ) ) |
| 26 | 25 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ dom 𝐹 ) |
| 27 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 28 | 26 27 | jca | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ) |
| 29 | 28 | biantrurd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
| 30 | df-3an | ⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) | |
| 31 | 29 30 | bitr4di | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
| 32 | 31 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
| 33 | 23 32 | bitr3d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) ) → ( ( 𝐴 𝐷 𝑃 ) < 𝑥 ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
| 34 | 33 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐴 𝐷 𝑃 ) < 𝑥 ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
| 35 | 20 34 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐴 𝐷 𝑃 ) < 𝑥 ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
| 36 | 35 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐴 𝐷 𝑃 ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
| 37 | 36 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐴 𝐷 𝑃 ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
| 38 | 37 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐴 𝐷 𝑃 ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
| 39 | 38 | anbi2d | ⊢ ( 𝜑 → ( ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐴 𝐷 𝑃 ) < 𝑥 ) ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) ) |
| 40 | 1 2 3 4 | lmmbr3 | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) ) |
| 41 | 3anass | ⊢ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) ) | |
| 42 | 40 41 | bitrdi | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) ) ) |
| 43 | 18 39 42 | 3bitr4rd | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐴 𝐷 𝑃 ) < 𝑥 ) ) ) |