This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzin2 | ⊢ ( ( 𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥ ) → ( 𝐴 ∩ 𝐵 ) ∈ ran ℤ≥ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ | |
| 2 | ffn | ⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) | |
| 3 | 1 2 | ax-mp | ⊢ ℤ≥ Fn ℤ |
| 4 | fvelrnb | ⊢ ( ℤ≥ Fn ℤ → ( 𝐴 ∈ ran ℤ≥ ↔ ∃ 𝑥 ∈ ℤ ( ℤ≥ ‘ 𝑥 ) = 𝐴 ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( 𝐴 ∈ ran ℤ≥ ↔ ∃ 𝑥 ∈ ℤ ( ℤ≥ ‘ 𝑥 ) = 𝐴 ) |
| 6 | fvelrnb | ⊢ ( ℤ≥ Fn ℤ → ( 𝐵 ∈ ran ℤ≥ ↔ ∃ 𝑦 ∈ ℤ ( ℤ≥ ‘ 𝑦 ) = 𝐵 ) ) | |
| 7 | 3 6 | ax-mp | ⊢ ( 𝐵 ∈ ran ℤ≥ ↔ ∃ 𝑦 ∈ ℤ ( ℤ≥ ‘ 𝑦 ) = 𝐵 ) |
| 8 | ineq1 | ⊢ ( ( ℤ≥ ‘ 𝑥 ) = 𝐴 → ( ( ℤ≥ ‘ 𝑥 ) ∩ ( ℤ≥ ‘ 𝑦 ) ) = ( 𝐴 ∩ ( ℤ≥ ‘ 𝑦 ) ) ) | |
| 9 | 8 | eleq1d | ⊢ ( ( ℤ≥ ‘ 𝑥 ) = 𝐴 → ( ( ( ℤ≥ ‘ 𝑥 ) ∩ ( ℤ≥ ‘ 𝑦 ) ) ∈ ran ℤ≥ ↔ ( 𝐴 ∩ ( ℤ≥ ‘ 𝑦 ) ) ∈ ran ℤ≥ ) ) |
| 10 | ineq2 | ⊢ ( ( ℤ≥ ‘ 𝑦 ) = 𝐵 → ( 𝐴 ∩ ( ℤ≥ ‘ 𝑦 ) ) = ( 𝐴 ∩ 𝐵 ) ) | |
| 11 | 10 | eleq1d | ⊢ ( ( ℤ≥ ‘ 𝑦 ) = 𝐵 → ( ( 𝐴 ∩ ( ℤ≥ ‘ 𝑦 ) ) ∈ ran ℤ≥ ↔ ( 𝐴 ∩ 𝐵 ) ∈ ran ℤ≥ ) ) |
| 12 | uzin | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑥 ) ∩ ( ℤ≥ ‘ 𝑦 ) ) = ( ℤ≥ ‘ if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ) ) | |
| 13 | ifcl | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ∈ ℤ ) | |
| 14 | 13 | ancoms | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ∈ ℤ ) |
| 15 | fnfvelrn | ⊢ ( ( ℤ≥ Fn ℤ ∧ if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ∈ ℤ ) → ( ℤ≥ ‘ if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ) ∈ ran ℤ≥ ) | |
| 16 | 3 14 15 | sylancr | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ℤ≥ ‘ if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ) ∈ ran ℤ≥ ) |
| 17 | 12 16 | eqeltrd | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑥 ) ∩ ( ℤ≥ ‘ 𝑦 ) ) ∈ ran ℤ≥ ) |
| 18 | 5 7 9 11 17 | 2gencl | ⊢ ( ( 𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥ ) → ( 𝐴 ∩ 𝐵 ) ∈ ran ℤ≥ ) |