This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of Munkres p. 95. (Contributed by NM, 26-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | clsndisj | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ) → ( 𝑈 ∩ 𝑆 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | simp1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝐽 ∈ Top ) | |
| 3 | simp2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ 𝑋 ) | |
| 4 | 1 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 5 | 4 | sseld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → 𝑃 ∈ 𝑋 ) ) |
| 6 | 5 | 3impia | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑃 ∈ 𝑋 ) |
| 7 | simp3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 8 | 1 | elcls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 9 | 8 | biimpa | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) |
| 10 | 2 3 6 7 9 | syl31anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ) |
| 11 | eleq2 | ⊢ ( 𝑥 = 𝑈 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑈 ) ) | |
| 12 | ineq1 | ⊢ ( 𝑥 = 𝑈 → ( 𝑥 ∩ 𝑆 ) = ( 𝑈 ∩ 𝑆 ) ) | |
| 13 | 12 | neeq1d | ⊢ ( 𝑥 = 𝑈 → ( ( 𝑥 ∩ 𝑆 ) ≠ ∅ ↔ ( 𝑈 ∩ 𝑆 ) ≠ ∅ ) ) |
| 14 | 11 13 | imbi12d | ⊢ ( 𝑥 = 𝑈 → ( ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ↔ ( 𝑃 ∈ 𝑈 → ( 𝑈 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 15 | 14 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) → ( 𝑈 ∈ 𝐽 → ( 𝑃 ∈ 𝑈 → ( 𝑈 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 16 | 15 | imp32 | ⊢ ( ( ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ 𝑆 ) ≠ ∅ ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ) → ( 𝑈 ∩ 𝑆 ) ≠ ∅ ) |
| 17 | 10 16 | sylan | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈 ) ) → ( 𝑈 ∩ 𝑆 ) ≠ ∅ ) |