This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A chained inference from transitive law for logical equivalence. This inference is frequently used to apply a definition to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3bitr4i.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 3bitr4i.2 | ⊢ ( 𝜒 ↔ 𝜑 ) | ||
| 3bitr4i.3 | ⊢ ( 𝜃 ↔ 𝜓 ) | ||
| Assertion | 3bitr4i | ⊢ ( 𝜒 ↔ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | 3bitr4i.2 | ⊢ ( 𝜒 ↔ 𝜑 ) | |
| 3 | 3bitr4i.3 | ⊢ ( 𝜃 ↔ 𝜓 ) | |
| 4 | 1 3 | bitr4i | ⊢ ( 𝜑 ↔ 𝜃 ) |
| 5 | 2 4 | bitri | ⊢ ( 𝜒 ↔ 𝜃 ) |