This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010) Avoid ax-pow . (Revised by BTernaryTau, 26-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | findcard2.1 | ⊢ ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) | |
| findcard2.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | ||
| findcard2.3 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝜑 ↔ 𝜃 ) ) | ||
| findcard2.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | ||
| findcard2.5 | ⊢ 𝜓 | ||
| findcard2.6 | ⊢ ( 𝑦 ∈ Fin → ( 𝜒 → 𝜃 ) ) | ||
| Assertion | findcard2 | ⊢ ( 𝐴 ∈ Fin → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | findcard2.1 | ⊢ ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | findcard2.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | findcard2.3 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | findcard2.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | |
| 5 | findcard2.5 | ⊢ 𝜓 | |
| 6 | findcard2.6 | ⊢ ( 𝑦 ∈ Fin → ( 𝜒 → 𝜃 ) ) | |
| 7 | isfi | ⊢ ( 𝑥 ∈ Fin ↔ ∃ 𝑤 ∈ ω 𝑥 ≈ 𝑤 ) | |
| 8 | breq2 | ⊢ ( 𝑤 = ∅ → ( 𝑥 ≈ 𝑤 ↔ 𝑥 ≈ ∅ ) ) | |
| 9 | 8 | imbi1d | ⊢ ( 𝑤 = ∅ → ( ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ( 𝑥 ≈ ∅ → 𝜑 ) ) ) |
| 10 | 9 | albidv | ⊢ ( 𝑤 = ∅ → ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ≈ ∅ → 𝜑 ) ) ) |
| 11 | breq2 | ⊢ ( 𝑤 = 𝑣 → ( 𝑥 ≈ 𝑤 ↔ 𝑥 ≈ 𝑣 ) ) | |
| 12 | 11 | imbi1d | ⊢ ( 𝑤 = 𝑣 → ( ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ( 𝑥 ≈ 𝑣 → 𝜑 ) ) ) |
| 13 | 12 | albidv | ⊢ ( 𝑤 = 𝑣 → ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) ) ) |
| 14 | breq2 | ⊢ ( 𝑤 = suc 𝑣 → ( 𝑥 ≈ 𝑤 ↔ 𝑥 ≈ suc 𝑣 ) ) | |
| 15 | 14 | imbi1d | ⊢ ( 𝑤 = suc 𝑣 → ( ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ( 𝑥 ≈ suc 𝑣 → 𝜑 ) ) ) |
| 16 | 15 | albidv | ⊢ ( 𝑤 = suc 𝑣 → ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ≈ suc 𝑣 → 𝜑 ) ) ) |
| 17 | en0 | ⊢ ( 𝑥 ≈ ∅ ↔ 𝑥 = ∅ ) | |
| 18 | 5 1 | mpbiri | ⊢ ( 𝑥 = ∅ → 𝜑 ) |
| 19 | 17 18 | sylbi | ⊢ ( 𝑥 ≈ ∅ → 𝜑 ) |
| 20 | 19 | ax-gen | ⊢ ∀ 𝑥 ( 𝑥 ≈ ∅ → 𝜑 ) |
| 21 | nnon | ⊢ ( 𝑣 ∈ ω → 𝑣 ∈ On ) | |
| 22 | rexdif1en | ⊢ ( ( 𝑣 ∈ On ∧ 𝑤 ≈ suc 𝑣 ) → ∃ 𝑧 ∈ 𝑤 ( 𝑤 ∖ { 𝑧 } ) ≈ 𝑣 ) | |
| 23 | 21 22 | sylan | ⊢ ( ( 𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣 ) → ∃ 𝑧 ∈ 𝑤 ( 𝑤 ∖ { 𝑧 } ) ≈ 𝑣 ) |
| 24 | snssi | ⊢ ( 𝑧 ∈ 𝑤 → { 𝑧 } ⊆ 𝑤 ) | |
| 25 | uncom | ⊢ ( ( 𝑤 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = ( { 𝑧 } ∪ ( 𝑤 ∖ { 𝑧 } ) ) | |
| 26 | undif | ⊢ ( { 𝑧 } ⊆ 𝑤 ↔ ( { 𝑧 } ∪ ( 𝑤 ∖ { 𝑧 } ) ) = 𝑤 ) | |
| 27 | 26 | biimpi | ⊢ ( { 𝑧 } ⊆ 𝑤 → ( { 𝑧 } ∪ ( 𝑤 ∖ { 𝑧 } ) ) = 𝑤 ) |
| 28 | 25 27 | eqtrid | ⊢ ( { 𝑧 } ⊆ 𝑤 → ( ( 𝑤 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = 𝑤 ) |
| 29 | vex | ⊢ 𝑤 ∈ V | |
| 30 | 29 | difexi | ⊢ ( 𝑤 ∖ { 𝑧 } ) ∈ V |
| 31 | breq1 | ⊢ ( 𝑦 = ( 𝑤 ∖ { 𝑧 } ) → ( 𝑦 ≈ 𝑣 ↔ ( 𝑤 ∖ { 𝑧 } ) ≈ 𝑣 ) ) | |
| 32 | 31 | anbi2d | ⊢ ( 𝑦 = ( 𝑤 ∖ { 𝑧 } ) → ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ 𝑣 ) ↔ ( 𝑣 ∈ ω ∧ ( 𝑤 ∖ { 𝑧 } ) ≈ 𝑣 ) ) ) |
| 33 | uneq1 | ⊢ ( 𝑦 = ( 𝑤 ∖ { 𝑧 } ) → ( 𝑦 ∪ { 𝑧 } ) = ( ( 𝑤 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) | |
| 34 | 33 | sbceq1d | ⊢ ( 𝑦 = ( 𝑤 ∖ { 𝑧 } ) → ( [ ( 𝑦 ∪ { 𝑧 } ) / 𝑥 ] 𝜑 ↔ [ ( ( 𝑤 ∖ { 𝑧 } ) ∪ { 𝑧 } ) / 𝑥 ] 𝜑 ) ) |
| 35 | 34 | imbi2d | ⊢ ( 𝑦 = ( 𝑤 ∖ { 𝑧 } ) → ( ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → [ ( 𝑦 ∪ { 𝑧 } ) / 𝑥 ] 𝜑 ) ↔ ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → [ ( ( 𝑤 ∖ { 𝑧 } ) ∪ { 𝑧 } ) / 𝑥 ] 𝜑 ) ) ) |
| 36 | 32 35 | imbi12d | ⊢ ( 𝑦 = ( 𝑤 ∖ { 𝑧 } ) → ( ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ 𝑣 ) → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → [ ( 𝑦 ∪ { 𝑧 } ) / 𝑥 ] 𝜑 ) ) ↔ ( ( 𝑣 ∈ ω ∧ ( 𝑤 ∖ { 𝑧 } ) ≈ 𝑣 ) → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → [ ( ( 𝑤 ∖ { 𝑧 } ) ∪ { 𝑧 } ) / 𝑥 ] 𝜑 ) ) ) ) |
| 37 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ 𝑣 ↔ 𝑦 ≈ 𝑣 ) ) | |
| 38 | 37 2 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ≈ 𝑣 → 𝜑 ) ↔ ( 𝑦 ≈ 𝑣 → 𝜒 ) ) ) |
| 39 | 38 | spvv | ⊢ ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → ( 𝑦 ≈ 𝑣 → 𝜒 ) ) |
| 40 | rspe | ⊢ ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ 𝑣 ) → ∃ 𝑣 ∈ ω 𝑦 ≈ 𝑣 ) | |
| 41 | isfi | ⊢ ( 𝑦 ∈ Fin ↔ ∃ 𝑣 ∈ ω 𝑦 ≈ 𝑣 ) | |
| 42 | 40 41 | sylibr | ⊢ ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ 𝑣 ) → 𝑦 ∈ Fin ) |
| 43 | pm2.27 | ⊢ ( 𝑦 ≈ 𝑣 → ( ( 𝑦 ≈ 𝑣 → 𝜒 ) → 𝜒 ) ) | |
| 44 | 43 | adantl | ⊢ ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ 𝑣 ) → ( ( 𝑦 ≈ 𝑣 → 𝜒 ) → 𝜒 ) ) |
| 45 | 42 44 6 | sylsyld | ⊢ ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ 𝑣 ) → ( ( 𝑦 ≈ 𝑣 → 𝜒 ) → 𝜃 ) ) |
| 46 | 39 45 | syl5 | ⊢ ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ 𝑣 ) → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → 𝜃 ) ) |
| 47 | vex | ⊢ 𝑦 ∈ V | |
| 48 | vsnex | ⊢ { 𝑧 } ∈ V | |
| 49 | 47 48 | unex | ⊢ ( 𝑦 ∪ { 𝑧 } ) ∈ V |
| 50 | 49 3 | sbcie | ⊢ ( [ ( 𝑦 ∪ { 𝑧 } ) / 𝑥 ] 𝜑 ↔ 𝜃 ) |
| 51 | 46 50 | imbitrrdi | ⊢ ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ 𝑣 ) → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → [ ( 𝑦 ∪ { 𝑧 } ) / 𝑥 ] 𝜑 ) ) |
| 52 | 30 36 51 | vtocl | ⊢ ( ( 𝑣 ∈ ω ∧ ( 𝑤 ∖ { 𝑧 } ) ≈ 𝑣 ) → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → [ ( ( 𝑤 ∖ { 𝑧 } ) ∪ { 𝑧 } ) / 𝑥 ] 𝜑 ) ) |
| 53 | dfsbcq | ⊢ ( ( ( 𝑤 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = 𝑤 → ( [ ( ( 𝑤 ∖ { 𝑧 } ) ∪ { 𝑧 } ) / 𝑥 ] 𝜑 ↔ [ 𝑤 / 𝑥 ] 𝜑 ) ) | |
| 54 | 53 | imbi2d | ⊢ ( ( ( 𝑤 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = 𝑤 → ( ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → [ ( ( 𝑤 ∖ { 𝑧 } ) ∪ { 𝑧 } ) / 𝑥 ] 𝜑 ) ↔ ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → [ 𝑤 / 𝑥 ] 𝜑 ) ) ) |
| 55 | 52 54 | imbitrid | ⊢ ( ( ( 𝑤 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = 𝑤 → ( ( 𝑣 ∈ ω ∧ ( 𝑤 ∖ { 𝑧 } ) ≈ 𝑣 ) → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → [ 𝑤 / 𝑥 ] 𝜑 ) ) ) |
| 56 | 24 28 55 | 3syl | ⊢ ( 𝑧 ∈ 𝑤 → ( ( 𝑣 ∈ ω ∧ ( 𝑤 ∖ { 𝑧 } ) ≈ 𝑣 ) → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → [ 𝑤 / 𝑥 ] 𝜑 ) ) ) |
| 57 | 56 | expd | ⊢ ( 𝑧 ∈ 𝑤 → ( 𝑣 ∈ ω → ( ( 𝑤 ∖ { 𝑧 } ) ≈ 𝑣 → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → [ 𝑤 / 𝑥 ] 𝜑 ) ) ) ) |
| 58 | 57 | com12 | ⊢ ( 𝑣 ∈ ω → ( 𝑧 ∈ 𝑤 → ( ( 𝑤 ∖ { 𝑧 } ) ≈ 𝑣 → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → [ 𝑤 / 𝑥 ] 𝜑 ) ) ) ) |
| 59 | 58 | rexlimdv | ⊢ ( 𝑣 ∈ ω → ( ∃ 𝑧 ∈ 𝑤 ( 𝑤 ∖ { 𝑧 } ) ≈ 𝑣 → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → [ 𝑤 / 𝑥 ] 𝜑 ) ) ) |
| 60 | 59 | adantr | ⊢ ( ( 𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣 ) → ( ∃ 𝑧 ∈ 𝑤 ( 𝑤 ∖ { 𝑧 } ) ≈ 𝑣 → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → [ 𝑤 / 𝑥 ] 𝜑 ) ) ) |
| 61 | 23 60 | mpd | ⊢ ( ( 𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣 ) → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → [ 𝑤 / 𝑥 ] 𝜑 ) ) |
| 62 | 61 | ex | ⊢ ( 𝑣 ∈ ω → ( 𝑤 ≈ suc 𝑣 → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → [ 𝑤 / 𝑥 ] 𝜑 ) ) ) |
| 63 | 62 | com23 | ⊢ ( 𝑣 ∈ ω → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → ( 𝑤 ≈ suc 𝑣 → [ 𝑤 / 𝑥 ] 𝜑 ) ) ) |
| 64 | 63 | alrimdv | ⊢ ( 𝑣 ∈ ω → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → ∀ 𝑤 ( 𝑤 ≈ suc 𝑣 → [ 𝑤 / 𝑥 ] 𝜑 ) ) ) |
| 65 | nfv | ⊢ Ⅎ 𝑤 ( 𝑥 ≈ suc 𝑣 → 𝜑 ) | |
| 66 | nfv | ⊢ Ⅎ 𝑥 𝑤 ≈ suc 𝑣 | |
| 67 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑤 / 𝑥 ] 𝜑 | |
| 68 | 66 67 | nfim | ⊢ Ⅎ 𝑥 ( 𝑤 ≈ suc 𝑣 → [ 𝑤 / 𝑥 ] 𝜑 ) |
| 69 | breq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ≈ suc 𝑣 ↔ 𝑤 ≈ suc 𝑣 ) ) | |
| 70 | sbceq1a | ⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ [ 𝑤 / 𝑥 ] 𝜑 ) ) | |
| 71 | 69 70 | imbi12d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ≈ suc 𝑣 → 𝜑 ) ↔ ( 𝑤 ≈ suc 𝑣 → [ 𝑤 / 𝑥 ] 𝜑 ) ) ) |
| 72 | 65 68 71 | cbvalv1 | ⊢ ( ∀ 𝑥 ( 𝑥 ≈ suc 𝑣 → 𝜑 ) ↔ ∀ 𝑤 ( 𝑤 ≈ suc 𝑣 → [ 𝑤 / 𝑥 ] 𝜑 ) ) |
| 73 | 64 72 | imbitrrdi | ⊢ ( 𝑣 ∈ ω → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → ∀ 𝑥 ( 𝑥 ≈ suc 𝑣 → 𝜑 ) ) ) |
| 74 | 10 13 16 20 73 | finds1 | ⊢ ( 𝑤 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ) |
| 75 | 74 | 19.21bi | ⊢ ( 𝑤 ∈ ω → ( 𝑥 ≈ 𝑤 → 𝜑 ) ) |
| 76 | 75 | rexlimiv | ⊢ ( ∃ 𝑤 ∈ ω 𝑥 ≈ 𝑤 → 𝜑 ) |
| 77 | 7 76 | sylbi | ⊢ ( 𝑥 ∈ Fin → 𝜑 ) |
| 78 | 4 77 | vtoclga | ⊢ ( 𝐴 ∈ Fin → 𝜏 ) |