This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The addition operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpladd.p | |- P = ( I mPoly R ) |
|
| mpladd.b | |- B = ( Base ` P ) |
||
| mpladd.a | |- .+ = ( +g ` R ) |
||
| mpladd.g | |- .+b = ( +g ` P ) |
||
| mpladd.x | |- ( ph -> X e. B ) |
||
| mpladd.y | |- ( ph -> Y e. B ) |
||
| Assertion | mpladd | |- ( ph -> ( X .+b Y ) = ( X oF .+ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpladd.p | |- P = ( I mPoly R ) |
|
| 2 | mpladd.b | |- B = ( Base ` P ) |
|
| 3 | mpladd.a | |- .+ = ( +g ` R ) |
|
| 4 | mpladd.g | |- .+b = ( +g ` P ) |
|
| 5 | mpladd.x | |- ( ph -> X e. B ) |
|
| 6 | mpladd.y | |- ( ph -> Y e. B ) |
|
| 7 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 8 | eqid | |- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
|
| 9 | 1 7 4 | mplplusg | |- .+b = ( +g ` ( I mPwSer R ) ) |
| 10 | 1 7 2 8 | mplbasss | |- B C_ ( Base ` ( I mPwSer R ) ) |
| 11 | 10 5 | sselid | |- ( ph -> X e. ( Base ` ( I mPwSer R ) ) ) |
| 12 | 10 6 | sselid | |- ( ph -> Y e. ( Base ` ( I mPwSer R ) ) ) |
| 13 | 7 8 3 9 11 12 | psradd | |- ( ph -> ( X .+b Y ) = ( X oF .+ Y ) ) |