This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of a family that is nonzero at at most one point. (Contributed by Stefan O'Rear, 7-Feb-2015) (Revised by Mario Carneiro, 25-Apr-2016) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumpt.b | |- B = ( Base ` G ) |
|
| gsumpt.z | |- .0. = ( 0g ` G ) |
||
| gsumpt.g | |- ( ph -> G e. Mnd ) |
||
| gsumpt.a | |- ( ph -> A e. V ) |
||
| gsumpt.x | |- ( ph -> X e. A ) |
||
| gsumpt.f | |- ( ph -> F : A --> B ) |
||
| gsumpt.s | |- ( ph -> ( F supp .0. ) C_ { X } ) |
||
| Assertion | gsumpt | |- ( ph -> ( G gsum F ) = ( F ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumpt.b | |- B = ( Base ` G ) |
|
| 2 | gsumpt.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsumpt.g | |- ( ph -> G e. Mnd ) |
|
| 4 | gsumpt.a | |- ( ph -> A e. V ) |
|
| 5 | gsumpt.x | |- ( ph -> X e. A ) |
|
| 6 | gsumpt.f | |- ( ph -> F : A --> B ) |
|
| 7 | gsumpt.s | |- ( ph -> ( F supp .0. ) C_ { X } ) |
|
| 8 | 5 | snssd | |- ( ph -> { X } C_ A ) |
| 9 | 6 8 | feqresmpt | |- ( ph -> ( F |` { X } ) = ( a e. { X } |-> ( F ` a ) ) ) |
| 10 | 9 | oveq2d | |- ( ph -> ( G gsum ( F |` { X } ) ) = ( G gsum ( a e. { X } |-> ( F ` a ) ) ) ) |
| 11 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 12 | 6 5 | ffvelcdmd | |- ( ph -> ( F ` X ) e. B ) |
| 13 | eqidd | |- ( ph -> ( ( F ` X ) ( +g ` G ) ( F ` X ) ) = ( ( F ` X ) ( +g ` G ) ( F ` X ) ) ) |
|
| 14 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 15 | 1 14 11 | elcntzsn | |- ( ( F ` X ) e. B -> ( ( F ` X ) e. ( ( Cntz ` G ) ` { ( F ` X ) } ) <-> ( ( F ` X ) e. B /\ ( ( F ` X ) ( +g ` G ) ( F ` X ) ) = ( ( F ` X ) ( +g ` G ) ( F ` X ) ) ) ) ) |
| 16 | 12 15 | syl | |- ( ph -> ( ( F ` X ) e. ( ( Cntz ` G ) ` { ( F ` X ) } ) <-> ( ( F ` X ) e. B /\ ( ( F ` X ) ( +g ` G ) ( F ` X ) ) = ( ( F ` X ) ( +g ` G ) ( F ` X ) ) ) ) ) |
| 17 | 12 13 16 | mpbir2and | |- ( ph -> ( F ` X ) e. ( ( Cntz ` G ) ` { ( F ` X ) } ) ) |
| 18 | 17 | snssd | |- ( ph -> { ( F ` X ) } C_ ( ( Cntz ` G ) ` { ( F ` X ) } ) ) |
| 19 | eqid | |- ( mrCls ` ( SubMnd ` G ) ) = ( mrCls ` ( SubMnd ` G ) ) |
|
| 20 | eqid | |- ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) = ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
|
| 21 | 11 19 20 | cntzspan | |- ( ( G e. Mnd /\ { ( F ` X ) } C_ ( ( Cntz ` G ) ` { ( F ` X ) } ) ) -> ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) e. CMnd ) |
| 22 | 3 18 21 | syl2anc | |- ( ph -> ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) e. CMnd ) |
| 23 | 1 | submacs | |- ( G e. Mnd -> ( SubMnd ` G ) e. ( ACS ` B ) ) |
| 24 | acsmre | |- ( ( SubMnd ` G ) e. ( ACS ` B ) -> ( SubMnd ` G ) e. ( Moore ` B ) ) |
|
| 25 | 3 23 24 | 3syl | |- ( ph -> ( SubMnd ` G ) e. ( Moore ` B ) ) |
| 26 | 12 | snssd | |- ( ph -> { ( F ` X ) } C_ B ) |
| 27 | 19 | mrccl | |- ( ( ( SubMnd ` G ) e. ( Moore ` B ) /\ { ( F ` X ) } C_ B ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) e. ( SubMnd ` G ) ) |
| 28 | 25 26 27 | syl2anc | |- ( ph -> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) e. ( SubMnd ` G ) ) |
| 29 | 20 11 | submcmn2 | |- ( ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) e. ( SubMnd ` G ) -> ( ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) e. CMnd <-> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) C_ ( ( Cntz ` G ) ` ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) ) ) |
| 30 | 28 29 | syl | |- ( ph -> ( ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) e. CMnd <-> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) C_ ( ( Cntz ` G ) ` ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) ) ) |
| 31 | 22 30 | mpbid | |- ( ph -> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) C_ ( ( Cntz ` G ) ` ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) ) |
| 32 | 6 | ffnd | |- ( ph -> F Fn A ) |
| 33 | simpr | |- ( ( ( ph /\ a e. A ) /\ a = X ) -> a = X ) |
|
| 34 | 33 | fveq2d | |- ( ( ( ph /\ a e. A ) /\ a = X ) -> ( F ` a ) = ( F ` X ) ) |
| 35 | 25 19 26 | mrcssidd | |- ( ph -> { ( F ` X ) } C_ ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
| 36 | fvex | |- ( F ` X ) e. _V |
|
| 37 | 36 | snss | |- ( ( F ` X ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) <-> { ( F ` X ) } C_ ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
| 38 | 35 37 | sylibr | |- ( ph -> ( F ` X ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
| 39 | 38 | ad2antrr | |- ( ( ( ph /\ a e. A ) /\ a = X ) -> ( F ` X ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
| 40 | 34 39 | eqeltrd | |- ( ( ( ph /\ a e. A ) /\ a = X ) -> ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
| 41 | eldifsn | |- ( a e. ( A \ { X } ) <-> ( a e. A /\ a =/= X ) ) |
|
| 42 | 2 | fvexi | |- .0. e. _V |
| 43 | 42 | a1i | |- ( ph -> .0. e. _V ) |
| 44 | 6 7 4 43 | suppssr | |- ( ( ph /\ a e. ( A \ { X } ) ) -> ( F ` a ) = .0. ) |
| 45 | 41 44 | sylan2br | |- ( ( ph /\ ( a e. A /\ a =/= X ) ) -> ( F ` a ) = .0. ) |
| 46 | 2 | subm0cl | |- ( ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) e. ( SubMnd ` G ) -> .0. e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
| 47 | 28 46 | syl | |- ( ph -> .0. e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
| 48 | 47 | adantr | |- ( ( ph /\ ( a e. A /\ a =/= X ) ) -> .0. e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
| 49 | 45 48 | eqeltrd | |- ( ( ph /\ ( a e. A /\ a =/= X ) ) -> ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
| 50 | 49 | anassrs | |- ( ( ( ph /\ a e. A ) /\ a =/= X ) -> ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
| 51 | 40 50 | pm2.61dane | |- ( ( ph /\ a e. A ) -> ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
| 52 | 51 | ralrimiva | |- ( ph -> A. a e. A ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
| 53 | ffnfv | |- ( F : A --> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) <-> ( F Fn A /\ A. a e. A ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) ) |
|
| 54 | 32 52 53 | sylanbrc | |- ( ph -> F : A --> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
| 55 | 54 | frnd | |- ( ph -> ran F C_ ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
| 56 | 11 | cntzidss | |- ( ( ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) C_ ( ( Cntz ` G ) ` ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) /\ ran F C_ ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) -> ran F C_ ( ( Cntz ` G ) ` ran F ) ) |
| 57 | 31 55 56 | syl2anc | |- ( ph -> ran F C_ ( ( Cntz ` G ) ` ran F ) ) |
| 58 | 6 | ffund | |- ( ph -> Fun F ) |
| 59 | snfi | |- { X } e. Fin |
|
| 60 | ssfi | |- ( ( { X } e. Fin /\ ( F supp .0. ) C_ { X } ) -> ( F supp .0. ) e. Fin ) |
|
| 61 | 59 7 60 | sylancr | |- ( ph -> ( F supp .0. ) e. Fin ) |
| 62 | 6 4 | fexd | |- ( ph -> F e. _V ) |
| 63 | isfsupp | |- ( ( F e. _V /\ .0. e. _V ) -> ( F finSupp .0. <-> ( Fun F /\ ( F supp .0. ) e. Fin ) ) ) |
|
| 64 | 62 43 63 | syl2anc | |- ( ph -> ( F finSupp .0. <-> ( Fun F /\ ( F supp .0. ) e. Fin ) ) ) |
| 65 | 58 61 64 | mpbir2and | |- ( ph -> F finSupp .0. ) |
| 66 | 1 2 11 3 4 6 57 7 65 | gsumzres | |- ( ph -> ( G gsum ( F |` { X } ) ) = ( G gsum F ) ) |
| 67 | fveq2 | |- ( a = X -> ( F ` a ) = ( F ` X ) ) |
|
| 68 | 1 67 | gsumsn | |- ( ( G e. Mnd /\ X e. A /\ ( F ` X ) e. B ) -> ( G gsum ( a e. { X } |-> ( F ` a ) ) ) = ( F ` X ) ) |
| 69 | 3 5 12 68 | syl3anc | |- ( ph -> ( G gsum ( a e. { X } |-> ( F ` a ) ) ) = ( F ` X ) ) |
| 70 | 10 66 69 | 3eqtr3d | |- ( ph -> ( G gsum F ) = ( F ` X ) ) |