This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a given interpretation of the variables G and of the scalars F , this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 11-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlseu.p | |- P = ( I mPoly R ) |
|
| evlseu.c | |- C = ( Base ` S ) |
||
| evlseu.a | |- A = ( algSc ` P ) |
||
| evlseu.v | |- V = ( I mVar R ) |
||
| evlseu.i | |- ( ph -> I e. W ) |
||
| evlseu.r | |- ( ph -> R e. CRing ) |
||
| evlseu.s | |- ( ph -> S e. CRing ) |
||
| evlseu.f | |- ( ph -> F e. ( R RingHom S ) ) |
||
| evlseu.g | |- ( ph -> G : I --> C ) |
||
| Assertion | evlseu | |- ( ph -> E! m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlseu.p | |- P = ( I mPoly R ) |
|
| 2 | evlseu.c | |- C = ( Base ` S ) |
|
| 3 | evlseu.a | |- A = ( algSc ` P ) |
|
| 4 | evlseu.v | |- V = ( I mVar R ) |
|
| 5 | evlseu.i | |- ( ph -> I e. W ) |
|
| 6 | evlseu.r | |- ( ph -> R e. CRing ) |
|
| 7 | evlseu.s | |- ( ph -> S e. CRing ) |
|
| 8 | evlseu.f | |- ( ph -> F e. ( R RingHom S ) ) |
|
| 9 | evlseu.g | |- ( ph -> G : I --> C ) |
|
| 10 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 11 | eqid | |- { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } = { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |
|
| 12 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 13 | eqid | |- ( .g ` ( mulGrp ` S ) ) = ( .g ` ( mulGrp ` S ) ) |
|
| 14 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 15 | eqid | |- ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) = ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) |
|
| 16 | 1 10 2 11 12 13 14 4 15 5 6 7 8 9 3 | evlslem1 | |- ( ph -> ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) e. ( P RingHom S ) /\ ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. A ) = F /\ ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. V ) = G ) ) |
| 17 | coeq1 | |- ( m = ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) -> ( m o. A ) = ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. A ) ) |
|
| 18 | 17 | eqeq1d | |- ( m = ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) -> ( ( m o. A ) = F <-> ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. A ) = F ) ) |
| 19 | coeq1 | |- ( m = ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) -> ( m o. V ) = ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. V ) ) |
|
| 20 | 19 | eqeq1d | |- ( m = ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) -> ( ( m o. V ) = G <-> ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. V ) = G ) ) |
| 21 | 18 20 | anbi12d | |- ( m = ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) -> ( ( ( m o. A ) = F /\ ( m o. V ) = G ) <-> ( ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. A ) = F /\ ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. V ) = G ) ) ) |
| 22 | 21 | rspcev | |- ( ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) e. ( P RingHom S ) /\ ( ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. A ) = F /\ ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. V ) = G ) ) -> E. m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) ) |
| 23 | 22 | 3impb | |- ( ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) e. ( P RingHom S ) /\ ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. A ) = F /\ ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. V ) = G ) -> E. m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) ) |
| 24 | 16 23 | syl | |- ( ph -> E. m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) ) |
| 25 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 26 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 27 | 6 26 | syl | |- ( ph -> R e. Ring ) |
| 28 | 1 10 25 3 5 27 | mplasclf | |- ( ph -> A : ( Base ` R ) --> ( Base ` P ) ) |
| 29 | 28 | ffund | |- ( ph -> Fun A ) |
| 30 | funcoeqres | |- ( ( Fun A /\ ( m o. A ) = F ) -> ( m |` ran A ) = ( F o. `' A ) ) |
|
| 31 | 29 30 | sylan | |- ( ( ph /\ ( m o. A ) = F ) -> ( m |` ran A ) = ( F o. `' A ) ) |
| 32 | 1 4 10 5 27 | mvrf2 | |- ( ph -> V : I --> ( Base ` P ) ) |
| 33 | 32 | ffund | |- ( ph -> Fun V ) |
| 34 | funcoeqres | |- ( ( Fun V /\ ( m o. V ) = G ) -> ( m |` ran V ) = ( G o. `' V ) ) |
|
| 35 | 33 34 | sylan | |- ( ( ph /\ ( m o. V ) = G ) -> ( m |` ran V ) = ( G o. `' V ) ) |
| 36 | 31 35 | anim12dan | |- ( ( ph /\ ( ( m o. A ) = F /\ ( m o. V ) = G ) ) -> ( ( m |` ran A ) = ( F o. `' A ) /\ ( m |` ran V ) = ( G o. `' V ) ) ) |
| 37 | 36 | ex | |- ( ph -> ( ( ( m o. A ) = F /\ ( m o. V ) = G ) -> ( ( m |` ran A ) = ( F o. `' A ) /\ ( m |` ran V ) = ( G o. `' V ) ) ) ) |
| 38 | resundi | |- ( m |` ( ran A u. ran V ) ) = ( ( m |` ran A ) u. ( m |` ran V ) ) |
|
| 39 | uneq12 | |- ( ( ( m |` ran A ) = ( F o. `' A ) /\ ( m |` ran V ) = ( G o. `' V ) ) -> ( ( m |` ran A ) u. ( m |` ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) |
|
| 40 | 38 39 | eqtrid | |- ( ( ( m |` ran A ) = ( F o. `' A ) /\ ( m |` ran V ) = ( G o. `' V ) ) -> ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) |
| 41 | 37 40 | syl6 | |- ( ph -> ( ( ( m o. A ) = F /\ ( m o. V ) = G ) -> ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) ) |
| 42 | 41 | ralrimivw | |- ( ph -> A. m e. ( P RingHom S ) ( ( ( m o. A ) = F /\ ( m o. V ) = G ) -> ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) ) |
| 43 | eqtr3 | |- ( ( ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) /\ ( n |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) -> ( m |` ( ran A u. ran V ) ) = ( n |` ( ran A u. ran V ) ) ) |
|
| 44 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 45 | 44 5 6 | psrassa | |- ( ph -> ( I mPwSer R ) e. AssAlg ) |
| 46 | eqid | |- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
|
| 47 | 44 4 46 5 27 | mvrf | |- ( ph -> V : I --> ( Base ` ( I mPwSer R ) ) ) |
| 48 | 47 | frnd | |- ( ph -> ran V C_ ( Base ` ( I mPwSer R ) ) ) |
| 49 | eqid | |- ( AlgSpan ` ( I mPwSer R ) ) = ( AlgSpan ` ( I mPwSer R ) ) |
|
| 50 | eqid | |- ( algSc ` ( I mPwSer R ) ) = ( algSc ` ( I mPwSer R ) ) |
|
| 51 | eqid | |- ( mrCls ` ( SubRing ` ( I mPwSer R ) ) ) = ( mrCls ` ( SubRing ` ( I mPwSer R ) ) ) |
|
| 52 | 49 50 51 46 | aspval2 | |- ( ( ( I mPwSer R ) e. AssAlg /\ ran V C_ ( Base ` ( I mPwSer R ) ) ) -> ( ( AlgSpan ` ( I mPwSer R ) ) ` ran V ) = ( ( mrCls ` ( SubRing ` ( I mPwSer R ) ) ) ` ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) ) |
| 53 | 45 48 52 | syl2anc | |- ( ph -> ( ( AlgSpan ` ( I mPwSer R ) ) ` ran V ) = ( ( mrCls ` ( SubRing ` ( I mPwSer R ) ) ) ` ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) ) |
| 54 | 1 44 4 49 5 6 | mplbas2 | |- ( ph -> ( ( AlgSpan ` ( I mPwSer R ) ) ` ran V ) = ( Base ` P ) ) |
| 55 | 44 1 10 5 27 | mplsubrg | |- ( ph -> ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) ) |
| 56 | 1 44 10 | mplval2 | |- P = ( ( I mPwSer R ) |`s ( Base ` P ) ) |
| 57 | 56 | subsubrg2 | |- ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) -> ( SubRing ` P ) = ( ( SubRing ` ( I mPwSer R ) ) i^i ~P ( Base ` P ) ) ) |
| 58 | 55 57 | syl | |- ( ph -> ( SubRing ` P ) = ( ( SubRing ` ( I mPwSer R ) ) i^i ~P ( Base ` P ) ) ) |
| 59 | 58 | fveq2d | |- ( ph -> ( mrCls ` ( SubRing ` P ) ) = ( mrCls ` ( ( SubRing ` ( I mPwSer R ) ) i^i ~P ( Base ` P ) ) ) ) |
| 60 | 50 56 | ressascl | |- ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) -> ( algSc ` ( I mPwSer R ) ) = ( algSc ` P ) ) |
| 61 | 55 60 | syl | |- ( ph -> ( algSc ` ( I mPwSer R ) ) = ( algSc ` P ) ) |
| 62 | 3 61 | eqtr4id | |- ( ph -> A = ( algSc ` ( I mPwSer R ) ) ) |
| 63 | 62 | rneqd | |- ( ph -> ran A = ran ( algSc ` ( I mPwSer R ) ) ) |
| 64 | 63 | uneq1d | |- ( ph -> ( ran A u. ran V ) = ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) |
| 65 | 59 64 | fveq12d | |- ( ph -> ( ( mrCls ` ( SubRing ` P ) ) ` ( ran A u. ran V ) ) = ( ( mrCls ` ( ( SubRing ` ( I mPwSer R ) ) i^i ~P ( Base ` P ) ) ) ` ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) ) |
| 66 | assaring | |- ( ( I mPwSer R ) e. AssAlg -> ( I mPwSer R ) e. Ring ) |
|
| 67 | 46 | subrgmre | |- ( ( I mPwSer R ) e. Ring -> ( SubRing ` ( I mPwSer R ) ) e. ( Moore ` ( Base ` ( I mPwSer R ) ) ) ) |
| 68 | 45 66 67 | 3syl | |- ( ph -> ( SubRing ` ( I mPwSer R ) ) e. ( Moore ` ( Base ` ( I mPwSer R ) ) ) ) |
| 69 | 28 | frnd | |- ( ph -> ran A C_ ( Base ` P ) ) |
| 70 | 63 69 | eqsstrrd | |- ( ph -> ran ( algSc ` ( I mPwSer R ) ) C_ ( Base ` P ) ) |
| 71 | 32 | frnd | |- ( ph -> ran V C_ ( Base ` P ) ) |
| 72 | 70 71 | unssd | |- ( ph -> ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) C_ ( Base ` P ) ) |
| 73 | eqid | |- ( mrCls ` ( ( SubRing ` ( I mPwSer R ) ) i^i ~P ( Base ` P ) ) ) = ( mrCls ` ( ( SubRing ` ( I mPwSer R ) ) i^i ~P ( Base ` P ) ) ) |
|
| 74 | 51 73 | submrc | |- ( ( ( SubRing ` ( I mPwSer R ) ) e. ( Moore ` ( Base ` ( I mPwSer R ) ) ) /\ ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) /\ ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) C_ ( Base ` P ) ) -> ( ( mrCls ` ( ( SubRing ` ( I mPwSer R ) ) i^i ~P ( Base ` P ) ) ) ` ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) = ( ( mrCls ` ( SubRing ` ( I mPwSer R ) ) ) ` ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) ) |
| 75 | 68 55 72 74 | syl3anc | |- ( ph -> ( ( mrCls ` ( ( SubRing ` ( I mPwSer R ) ) i^i ~P ( Base ` P ) ) ) ` ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) = ( ( mrCls ` ( SubRing ` ( I mPwSer R ) ) ) ` ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) ) |
| 76 | 65 75 | eqtr2d | |- ( ph -> ( ( mrCls ` ( SubRing ` ( I mPwSer R ) ) ) ` ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) = ( ( mrCls ` ( SubRing ` P ) ) ` ( ran A u. ran V ) ) ) |
| 77 | 53 54 76 | 3eqtr3d | |- ( ph -> ( Base ` P ) = ( ( mrCls ` ( SubRing ` P ) ) ` ( ran A u. ran V ) ) ) |
| 78 | 77 | ad2antrr | |- ( ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) /\ ( ran A u. ran V ) C_ dom ( m i^i n ) ) -> ( Base ` P ) = ( ( mrCls ` ( SubRing ` P ) ) ` ( ran A u. ran V ) ) ) |
| 79 | 1 5 27 | mplringd | |- ( ph -> P e. Ring ) |
| 80 | 10 | subrgmre | |- ( P e. Ring -> ( SubRing ` P ) e. ( Moore ` ( Base ` P ) ) ) |
| 81 | 79 80 | syl | |- ( ph -> ( SubRing ` P ) e. ( Moore ` ( Base ` P ) ) ) |
| 82 | 81 | ad2antrr | |- ( ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) /\ ( ran A u. ran V ) C_ dom ( m i^i n ) ) -> ( SubRing ` P ) e. ( Moore ` ( Base ` P ) ) ) |
| 83 | simpr | |- ( ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) /\ ( ran A u. ran V ) C_ dom ( m i^i n ) ) -> ( ran A u. ran V ) C_ dom ( m i^i n ) ) |
|
| 84 | rhmeql | |- ( ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) -> dom ( m i^i n ) e. ( SubRing ` P ) ) |
|
| 85 | 84 | ad2antlr | |- ( ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) /\ ( ran A u. ran V ) C_ dom ( m i^i n ) ) -> dom ( m i^i n ) e. ( SubRing ` P ) ) |
| 86 | eqid | |- ( mrCls ` ( SubRing ` P ) ) = ( mrCls ` ( SubRing ` P ) ) |
|
| 87 | 86 | mrcsscl | |- ( ( ( SubRing ` P ) e. ( Moore ` ( Base ` P ) ) /\ ( ran A u. ran V ) C_ dom ( m i^i n ) /\ dom ( m i^i n ) e. ( SubRing ` P ) ) -> ( ( mrCls ` ( SubRing ` P ) ) ` ( ran A u. ran V ) ) C_ dom ( m i^i n ) ) |
| 88 | 82 83 85 87 | syl3anc | |- ( ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) /\ ( ran A u. ran V ) C_ dom ( m i^i n ) ) -> ( ( mrCls ` ( SubRing ` P ) ) ` ( ran A u. ran V ) ) C_ dom ( m i^i n ) ) |
| 89 | 78 88 | eqsstrd | |- ( ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) /\ ( ran A u. ran V ) C_ dom ( m i^i n ) ) -> ( Base ` P ) C_ dom ( m i^i n ) ) |
| 90 | 89 | ex | |- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> ( ( ran A u. ran V ) C_ dom ( m i^i n ) -> ( Base ` P ) C_ dom ( m i^i n ) ) ) |
| 91 | simprl | |- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> m e. ( P RingHom S ) ) |
|
| 92 | 10 2 | rhmf | |- ( m e. ( P RingHom S ) -> m : ( Base ` P ) --> C ) |
| 93 | ffn | |- ( m : ( Base ` P ) --> C -> m Fn ( Base ` P ) ) |
|
| 94 | 91 92 93 | 3syl | |- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> m Fn ( Base ` P ) ) |
| 95 | simprr | |- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> n e. ( P RingHom S ) ) |
|
| 96 | 10 2 | rhmf | |- ( n e. ( P RingHom S ) -> n : ( Base ` P ) --> C ) |
| 97 | ffn | |- ( n : ( Base ` P ) --> C -> n Fn ( Base ` P ) ) |
|
| 98 | 95 96 97 | 3syl | |- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> n Fn ( Base ` P ) ) |
| 99 | 69 | adantr | |- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> ran A C_ ( Base ` P ) ) |
| 100 | 71 | adantr | |- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> ran V C_ ( Base ` P ) ) |
| 101 | 99 100 | unssd | |- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> ( ran A u. ran V ) C_ ( Base ` P ) ) |
| 102 | fnreseql | |- ( ( m Fn ( Base ` P ) /\ n Fn ( Base ` P ) /\ ( ran A u. ran V ) C_ ( Base ` P ) ) -> ( ( m |` ( ran A u. ran V ) ) = ( n |` ( ran A u. ran V ) ) <-> ( ran A u. ran V ) C_ dom ( m i^i n ) ) ) |
|
| 103 | 94 98 101 102 | syl3anc | |- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> ( ( m |` ( ran A u. ran V ) ) = ( n |` ( ran A u. ran V ) ) <-> ( ran A u. ran V ) C_ dom ( m i^i n ) ) ) |
| 104 | fneqeql2 | |- ( ( m Fn ( Base ` P ) /\ n Fn ( Base ` P ) ) -> ( m = n <-> ( Base ` P ) C_ dom ( m i^i n ) ) ) |
|
| 105 | 94 98 104 | syl2anc | |- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> ( m = n <-> ( Base ` P ) C_ dom ( m i^i n ) ) ) |
| 106 | 90 103 105 | 3imtr4d | |- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> ( ( m |` ( ran A u. ran V ) ) = ( n |` ( ran A u. ran V ) ) -> m = n ) ) |
| 107 | 43 106 | syl5 | |- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> ( ( ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) /\ ( n |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) -> m = n ) ) |
| 108 | 107 | ralrimivva | |- ( ph -> A. m e. ( P RingHom S ) A. n e. ( P RingHom S ) ( ( ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) /\ ( n |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) -> m = n ) ) |
| 109 | reseq1 | |- ( m = n -> ( m |` ( ran A u. ran V ) ) = ( n |` ( ran A u. ran V ) ) ) |
|
| 110 | 109 | eqeq1d | |- ( m = n -> ( ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) <-> ( n |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) ) |
| 111 | 110 | rmo4 | |- ( E* m e. ( P RingHom S ) ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) <-> A. m e. ( P RingHom S ) A. n e. ( P RingHom S ) ( ( ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) /\ ( n |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) -> m = n ) ) |
| 112 | 108 111 | sylibr | |- ( ph -> E* m e. ( P RingHom S ) ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) |
| 113 | rmoim | |- ( A. m e. ( P RingHom S ) ( ( ( m o. A ) = F /\ ( m o. V ) = G ) -> ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) -> ( E* m e. ( P RingHom S ) ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) -> E* m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) ) ) |
|
| 114 | 42 112 113 | sylc | |- ( ph -> E* m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) ) |
| 115 | reu5 | |- ( E! m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) <-> ( E. m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) /\ E* m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) ) ) |
|
| 116 | 24 114 115 | sylanbrc | |- ( ph -> E! m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) ) |