This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmlin.x | |- X = ( Base ` S ) |
|
| ghmlin.a | |- .+ = ( +g ` S ) |
||
| ghmlin.b | |- .+^ = ( +g ` T ) |
||
| Assertion | ghmlin | |- ( ( F e. ( S GrpHom T ) /\ U e. X /\ V e. X ) -> ( F ` ( U .+ V ) ) = ( ( F ` U ) .+^ ( F ` V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmlin.x | |- X = ( Base ` S ) |
|
| 2 | ghmlin.a | |- .+ = ( +g ` S ) |
|
| 3 | ghmlin.b | |- .+^ = ( +g ` T ) |
|
| 4 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 5 | 1 4 2 3 | isghm | |- ( F e. ( S GrpHom T ) <-> ( ( S e. Grp /\ T e. Grp ) /\ ( F : X --> ( Base ` T ) /\ A. a e. X A. b e. X ( F ` ( a .+ b ) ) = ( ( F ` a ) .+^ ( F ` b ) ) ) ) ) |
| 6 | 5 | simprbi | |- ( F e. ( S GrpHom T ) -> ( F : X --> ( Base ` T ) /\ A. a e. X A. b e. X ( F ` ( a .+ b ) ) = ( ( F ` a ) .+^ ( F ` b ) ) ) ) |
| 7 | 6 | simprd | |- ( F e. ( S GrpHom T ) -> A. a e. X A. b e. X ( F ` ( a .+ b ) ) = ( ( F ` a ) .+^ ( F ` b ) ) ) |
| 8 | fvoveq1 | |- ( a = U -> ( F ` ( a .+ b ) ) = ( F ` ( U .+ b ) ) ) |
|
| 9 | fveq2 | |- ( a = U -> ( F ` a ) = ( F ` U ) ) |
|
| 10 | 9 | oveq1d | |- ( a = U -> ( ( F ` a ) .+^ ( F ` b ) ) = ( ( F ` U ) .+^ ( F ` b ) ) ) |
| 11 | 8 10 | eqeq12d | |- ( a = U -> ( ( F ` ( a .+ b ) ) = ( ( F ` a ) .+^ ( F ` b ) ) <-> ( F ` ( U .+ b ) ) = ( ( F ` U ) .+^ ( F ` b ) ) ) ) |
| 12 | oveq2 | |- ( b = V -> ( U .+ b ) = ( U .+ V ) ) |
|
| 13 | 12 | fveq2d | |- ( b = V -> ( F ` ( U .+ b ) ) = ( F ` ( U .+ V ) ) ) |
| 14 | fveq2 | |- ( b = V -> ( F ` b ) = ( F ` V ) ) |
|
| 15 | 14 | oveq2d | |- ( b = V -> ( ( F ` U ) .+^ ( F ` b ) ) = ( ( F ` U ) .+^ ( F ` V ) ) ) |
| 16 | 13 15 | eqeq12d | |- ( b = V -> ( ( F ` ( U .+ b ) ) = ( ( F ` U ) .+^ ( F ` b ) ) <-> ( F ` ( U .+ V ) ) = ( ( F ` U ) .+^ ( F ` V ) ) ) ) |
| 17 | 11 16 | rspc2v | |- ( ( U e. X /\ V e. X ) -> ( A. a e. X A. b e. X ( F ` ( a .+ b ) ) = ( ( F ` a ) .+^ ( F ` b ) ) -> ( F ` ( U .+ V ) ) = ( ( F ` U ) .+^ ( F ` V ) ) ) ) |
| 18 | 7 17 | mpan9 | |- ( ( F e. ( S GrpHom T ) /\ ( U e. X /\ V e. X ) ) -> ( F ` ( U .+ V ) ) = ( ( F ` U ) .+^ ( F ` V ) ) ) |
| 19 | 18 | 3impb | |- ( ( F e. ( S GrpHom T ) /\ U e. X /\ V e. X ) -> ( F ` ( U .+ V ) ) = ( ( F ` U ) .+^ ( F ` V ) ) ) |