This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 22-Mar-2015) (Revised by AV, 28-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppss2.n | |- ( ( ph /\ k e. ( A \ W ) ) -> B = Z ) |
|
| suppss2.a | |- ( ph -> A e. V ) |
||
| Assertion | suppss2 | |- ( ph -> ( ( k e. A |-> B ) supp Z ) C_ W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppss2.n | |- ( ( ph /\ k e. ( A \ W ) ) -> B = Z ) |
|
| 2 | suppss2.a | |- ( ph -> A e. V ) |
|
| 3 | eqid | |- ( k e. A |-> B ) = ( k e. A |-> B ) |
|
| 4 | 2 | adantl | |- ( ( Z e. _V /\ ph ) -> A e. V ) |
| 5 | simpl | |- ( ( Z e. _V /\ ph ) -> Z e. _V ) |
|
| 6 | 3 4 5 | mptsuppdifd | |- ( ( Z e. _V /\ ph ) -> ( ( k e. A |-> B ) supp Z ) = { k e. A | B e. ( _V \ { Z } ) } ) |
| 7 | eldifsni | |- ( B e. ( _V \ { Z } ) -> B =/= Z ) |
|
| 8 | eldif | |- ( k e. ( A \ W ) <-> ( k e. A /\ -. k e. W ) ) |
|
| 9 | 1 | adantll | |- ( ( ( Z e. _V /\ ph ) /\ k e. ( A \ W ) ) -> B = Z ) |
| 10 | 8 9 | sylan2br | |- ( ( ( Z e. _V /\ ph ) /\ ( k e. A /\ -. k e. W ) ) -> B = Z ) |
| 11 | 10 | expr | |- ( ( ( Z e. _V /\ ph ) /\ k e. A ) -> ( -. k e. W -> B = Z ) ) |
| 12 | 11 | necon1ad | |- ( ( ( Z e. _V /\ ph ) /\ k e. A ) -> ( B =/= Z -> k e. W ) ) |
| 13 | 7 12 | syl5 | |- ( ( ( Z e. _V /\ ph ) /\ k e. A ) -> ( B e. ( _V \ { Z } ) -> k e. W ) ) |
| 14 | 13 | 3impia | |- ( ( ( Z e. _V /\ ph ) /\ k e. A /\ B e. ( _V \ { Z } ) ) -> k e. W ) |
| 15 | 14 | rabssdv | |- ( ( Z e. _V /\ ph ) -> { k e. A | B e. ( _V \ { Z } ) } C_ W ) |
| 16 | 6 15 | eqsstrd | |- ( ( Z e. _V /\ ph ) -> ( ( k e. A |-> B ) supp Z ) C_ W ) |
| 17 | 16 | ex | |- ( Z e. _V -> ( ph -> ( ( k e. A |-> B ) supp Z ) C_ W ) ) |
| 18 | id | |- ( -. Z e. _V -> -. Z e. _V ) |
|
| 19 | 18 | intnand | |- ( -. Z e. _V -> -. ( ( k e. A |-> B ) e. _V /\ Z e. _V ) ) |
| 20 | supp0prc | |- ( -. ( ( k e. A |-> B ) e. _V /\ Z e. _V ) -> ( ( k e. A |-> B ) supp Z ) = (/) ) |
|
| 21 | 19 20 | syl | |- ( -. Z e. _V -> ( ( k e. A |-> B ) supp Z ) = (/) ) |
| 22 | 0ss | |- (/) C_ W |
|
| 23 | 21 22 | eqsstrdi | |- ( -. Z e. _V -> ( ( k e. A |-> B ) supp Z ) C_ W ) |
| 24 | 23 | a1d | |- ( -. Z e. _V -> ( ph -> ( ( k e. A |-> B ) supp Z ) C_ W ) ) |
| 25 | 17 24 | pm2.61i | |- ( ph -> ( ( k e. A |-> B ) supp Z ) C_ W ) |