This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | offval.1 | |- ( ph -> F Fn A ) |
|
| offval.2 | |- ( ph -> G Fn B ) |
||
| offval.3 | |- ( ph -> A e. V ) |
||
| offval.4 | |- ( ph -> B e. W ) |
||
| offval.5 | |- ( A i^i B ) = S |
||
| offval.6 | |- ( ( ph /\ x e. A ) -> ( F ` x ) = C ) |
||
| offval.7 | |- ( ( ph /\ x e. B ) -> ( G ` x ) = D ) |
||
| Assertion | offval | |- ( ph -> ( F oF R G ) = ( x e. S |-> ( C R D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | |- ( ph -> F Fn A ) |
|
| 2 | offval.2 | |- ( ph -> G Fn B ) |
|
| 3 | offval.3 | |- ( ph -> A e. V ) |
|
| 4 | offval.4 | |- ( ph -> B e. W ) |
|
| 5 | offval.5 | |- ( A i^i B ) = S |
|
| 6 | offval.6 | |- ( ( ph /\ x e. A ) -> ( F ` x ) = C ) |
|
| 7 | offval.7 | |- ( ( ph /\ x e. B ) -> ( G ` x ) = D ) |
|
| 8 | fnex | |- ( ( F Fn A /\ A e. V ) -> F e. _V ) |
|
| 9 | 1 3 8 | syl2anc | |- ( ph -> F e. _V ) |
| 10 | fnex | |- ( ( G Fn B /\ B e. W ) -> G e. _V ) |
|
| 11 | 2 4 10 | syl2anc | |- ( ph -> G e. _V ) |
| 12 | 1 | fndmd | |- ( ph -> dom F = A ) |
| 13 | 2 | fndmd | |- ( ph -> dom G = B ) |
| 14 | 12 13 | ineq12d | |- ( ph -> ( dom F i^i dom G ) = ( A i^i B ) ) |
| 15 | 14 5 | eqtrdi | |- ( ph -> ( dom F i^i dom G ) = S ) |
| 16 | 15 | mpteq1d | |- ( ph -> ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) = ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
| 17 | inex1g | |- ( A e. V -> ( A i^i B ) e. _V ) |
|
| 18 | 5 17 | eqeltrrid | |- ( A e. V -> S e. _V ) |
| 19 | mptexg | |- ( S e. _V -> ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) e. _V ) |
|
| 20 | 3 18 19 | 3syl | |- ( ph -> ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) e. _V ) |
| 21 | 16 20 | eqeltrd | |- ( ph -> ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) e. _V ) |
| 22 | dmeq | |- ( f = F -> dom f = dom F ) |
|
| 23 | dmeq | |- ( g = G -> dom g = dom G ) |
|
| 24 | 22 23 | ineqan12d | |- ( ( f = F /\ g = G ) -> ( dom f i^i dom g ) = ( dom F i^i dom G ) ) |
| 25 | fveq1 | |- ( f = F -> ( f ` x ) = ( F ` x ) ) |
|
| 26 | fveq1 | |- ( g = G -> ( g ` x ) = ( G ` x ) ) |
|
| 27 | 25 26 | oveqan12d | |- ( ( f = F /\ g = G ) -> ( ( f ` x ) R ( g ` x ) ) = ( ( F ` x ) R ( G ` x ) ) ) |
| 28 | 24 27 | mpteq12dv | |- ( ( f = F /\ g = G ) -> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
| 29 | df-of | |- oF R = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |
|
| 30 | 28 29 | ovmpoga | |- ( ( F e. _V /\ G e. _V /\ ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) e. _V ) -> ( F oF R G ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
| 31 | 9 11 21 30 | syl3anc | |- ( ph -> ( F oF R G ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
| 32 | 5 | eleq2i | |- ( x e. ( A i^i B ) <-> x e. S ) |
| 33 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
| 34 | 32 33 | bitr3i | |- ( x e. S <-> ( x e. A /\ x e. B ) ) |
| 35 | 6 | adantrr | |- ( ( ph /\ ( x e. A /\ x e. B ) ) -> ( F ` x ) = C ) |
| 36 | 7 | adantrl | |- ( ( ph /\ ( x e. A /\ x e. B ) ) -> ( G ` x ) = D ) |
| 37 | 35 36 | oveq12d | |- ( ( ph /\ ( x e. A /\ x e. B ) ) -> ( ( F ` x ) R ( G ` x ) ) = ( C R D ) ) |
| 38 | 34 37 | sylan2b | |- ( ( ph /\ x e. S ) -> ( ( F ` x ) R ( G ` x ) ) = ( C R D ) ) |
| 39 | 38 | mpteq2dva | |- ( ph -> ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) = ( x e. S |-> ( C R D ) ) ) |
| 40 | 31 16 39 | 3eqtrd | |- ( ph -> ( F oF R G ) = ( x e. S |-> ( C R D ) ) ) |