This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The polynomial ring is an associative algebra. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mplgrp.p | |- P = ( I mPoly R ) |
|
| Assertion | mplassa | |- ( ( I e. V /\ R e. CRing ) -> P e. AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplgrp.p | |- P = ( I mPoly R ) |
|
| 2 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 3 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 4 | simpl | |- ( ( I e. V /\ R e. CRing ) -> I e. V ) |
|
| 5 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 6 | 5 | adantl | |- ( ( I e. V /\ R e. CRing ) -> R e. Ring ) |
| 7 | 2 1 3 4 6 | mplsubrg | |- ( ( I e. V /\ R e. CRing ) -> ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) ) |
| 8 | 2 1 3 4 6 | mpllss | |- ( ( I e. V /\ R e. CRing ) -> ( Base ` P ) e. ( LSubSp ` ( I mPwSer R ) ) ) |
| 9 | simpr | |- ( ( I e. V /\ R e. CRing ) -> R e. CRing ) |
|
| 10 | 2 4 9 | psrassa | |- ( ( I e. V /\ R e. CRing ) -> ( I mPwSer R ) e. AssAlg ) |
| 11 | eqid | |- ( 1r ` ( I mPwSer R ) ) = ( 1r ` ( I mPwSer R ) ) |
|
| 12 | 11 | subrg1cl | |- ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) -> ( 1r ` ( I mPwSer R ) ) e. ( Base ` P ) ) |
| 13 | 7 12 | syl | |- ( ( I e. V /\ R e. CRing ) -> ( 1r ` ( I mPwSer R ) ) e. ( Base ` P ) ) |
| 14 | eqid | |- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
|
| 15 | 14 | subrgss | |- ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) -> ( Base ` P ) C_ ( Base ` ( I mPwSer R ) ) ) |
| 16 | 7 15 | syl | |- ( ( I e. V /\ R e. CRing ) -> ( Base ` P ) C_ ( Base ` ( I mPwSer R ) ) ) |
| 17 | 1 2 3 | mplval2 | |- P = ( ( I mPwSer R ) |`s ( Base ` P ) ) |
| 18 | eqid | |- ( LSubSp ` ( I mPwSer R ) ) = ( LSubSp ` ( I mPwSer R ) ) |
|
| 19 | 17 18 14 11 | issubassa | |- ( ( ( I mPwSer R ) e. AssAlg /\ ( 1r ` ( I mPwSer R ) ) e. ( Base ` P ) /\ ( Base ` P ) C_ ( Base ` ( I mPwSer R ) ) ) -> ( P e. AssAlg <-> ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) /\ ( Base ` P ) e. ( LSubSp ` ( I mPwSer R ) ) ) ) ) |
| 20 | 10 13 16 19 | syl3anc | |- ( ( I e. V /\ R e. CRing ) -> ( P e. AssAlg <-> ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) /\ ( Base ` P ) e. ( LSubSp ` ( I mPwSer R ) ) ) ) ) |
| 21 | 7 8 20 | mpbir2and | |- ( ( I e. V /\ R e. CRing ) -> P e. AssAlg ) |