This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmlin.b | |- B = ( Base ` S ) |
|
| mhmlin.p | |- .+ = ( +g ` S ) |
||
| mhmlin.q | |- .+^ = ( +g ` T ) |
||
| Assertion | mhmlin | |- ( ( F e. ( S MndHom T ) /\ X e. B /\ Y e. B ) -> ( F ` ( X .+ Y ) ) = ( ( F ` X ) .+^ ( F ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmlin.b | |- B = ( Base ` S ) |
|
| 2 | mhmlin.p | |- .+ = ( +g ` S ) |
|
| 3 | mhmlin.q | |- .+^ = ( +g ` T ) |
|
| 4 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 5 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 6 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 7 | 1 4 2 3 5 6 | ismhm | |- ( F e. ( S MndHom T ) <-> ( ( S e. Mnd /\ T e. Mnd ) /\ ( F : B --> ( Base ` T ) /\ A. x e. B A. y e. B ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) ) ) |
| 8 | 7 | simprbi | |- ( F e. ( S MndHom T ) -> ( F : B --> ( Base ` T ) /\ A. x e. B A. y e. B ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) ) |
| 9 | 8 | simp2d | |- ( F e. ( S MndHom T ) -> A. x e. B A. y e. B ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
| 10 | fvoveq1 | |- ( x = X -> ( F ` ( x .+ y ) ) = ( F ` ( X .+ y ) ) ) |
|
| 11 | fveq2 | |- ( x = X -> ( F ` x ) = ( F ` X ) ) |
|
| 12 | 11 | oveq1d | |- ( x = X -> ( ( F ` x ) .+^ ( F ` y ) ) = ( ( F ` X ) .+^ ( F ` y ) ) ) |
| 13 | 10 12 | eqeq12d | |- ( x = X -> ( ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) <-> ( F ` ( X .+ y ) ) = ( ( F ` X ) .+^ ( F ` y ) ) ) ) |
| 14 | oveq2 | |- ( y = Y -> ( X .+ y ) = ( X .+ Y ) ) |
|
| 15 | 14 | fveq2d | |- ( y = Y -> ( F ` ( X .+ y ) ) = ( F ` ( X .+ Y ) ) ) |
| 16 | fveq2 | |- ( y = Y -> ( F ` y ) = ( F ` Y ) ) |
|
| 17 | 16 | oveq2d | |- ( y = Y -> ( ( F ` X ) .+^ ( F ` y ) ) = ( ( F ` X ) .+^ ( F ` Y ) ) ) |
| 18 | 15 17 | eqeq12d | |- ( y = Y -> ( ( F ` ( X .+ y ) ) = ( ( F ` X ) .+^ ( F ` y ) ) <-> ( F ` ( X .+ Y ) ) = ( ( F ` X ) .+^ ( F ` Y ) ) ) ) |
| 19 | 13 18 | rspc2v | |- ( ( X e. B /\ Y e. B ) -> ( A. x e. B A. y e. B ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) -> ( F ` ( X .+ Y ) ) = ( ( F ` X ) .+^ ( F ` Y ) ) ) ) |
| 20 | 9 19 | syl5com | |- ( F e. ( S MndHom T ) -> ( ( X e. B /\ Y e. B ) -> ( F ` ( X .+ Y ) ) = ( ( F ` X ) .+^ ( F ` Y ) ) ) ) |
| 21 | 20 | 3impib | |- ( ( F e. ( S MndHom T ) /\ X e. B /\ Y e. B ) -> ( F ` ( X .+ Y ) ) = ( ( F ` X ) .+^ ( F ` Y ) ) ) |