This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for evlseu . Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 26-Jul-2019) (Revised by AV, 11-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlslem1.p | |- P = ( I mPoly R ) |
|
| evlslem1.b | |- B = ( Base ` P ) |
||
| evlslem1.c | |- C = ( Base ` S ) |
||
| evlslem1.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| evlslem1.t | |- T = ( mulGrp ` S ) |
||
| evlslem1.x | |- .^ = ( .g ` T ) |
||
| evlslem1.m | |- .x. = ( .r ` S ) |
||
| evlslem1.v | |- V = ( I mVar R ) |
||
| evlslem1.e | |- E = ( p e. B |-> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
||
| evlslem1.i | |- ( ph -> I e. W ) |
||
| evlslem1.r | |- ( ph -> R e. CRing ) |
||
| evlslem1.s | |- ( ph -> S e. CRing ) |
||
| evlslem1.f | |- ( ph -> F e. ( R RingHom S ) ) |
||
| evlslem1.g | |- ( ph -> G : I --> C ) |
||
| evlslem6.y | |- ( ph -> Y e. B ) |
||
| Assertion | evlslem6 | |- ( ph -> ( ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) : D --> C /\ ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) finSupp ( 0g ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlslem1.p | |- P = ( I mPoly R ) |
|
| 2 | evlslem1.b | |- B = ( Base ` P ) |
|
| 3 | evlslem1.c | |- C = ( Base ` S ) |
|
| 4 | evlslem1.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 5 | evlslem1.t | |- T = ( mulGrp ` S ) |
|
| 6 | evlslem1.x | |- .^ = ( .g ` T ) |
|
| 7 | evlslem1.m | |- .x. = ( .r ` S ) |
|
| 8 | evlslem1.v | |- V = ( I mVar R ) |
|
| 9 | evlslem1.e | |- E = ( p e. B |-> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
|
| 10 | evlslem1.i | |- ( ph -> I e. W ) |
|
| 11 | evlslem1.r | |- ( ph -> R e. CRing ) |
|
| 12 | evlslem1.s | |- ( ph -> S e. CRing ) |
|
| 13 | evlslem1.f | |- ( ph -> F e. ( R RingHom S ) ) |
|
| 14 | evlslem1.g | |- ( ph -> G : I --> C ) |
|
| 15 | evlslem6.y | |- ( ph -> Y e. B ) |
|
| 16 | crngring | |- ( S e. CRing -> S e. Ring ) |
|
| 17 | 12 16 | syl | |- ( ph -> S e. Ring ) |
| 18 | 17 | adantr | |- ( ( ph /\ b e. D ) -> S e. Ring ) |
| 19 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 20 | 19 3 | rhmf | |- ( F e. ( R RingHom S ) -> F : ( Base ` R ) --> C ) |
| 21 | 13 20 | syl | |- ( ph -> F : ( Base ` R ) --> C ) |
| 22 | 21 | adantr | |- ( ( ph /\ b e. D ) -> F : ( Base ` R ) --> C ) |
| 23 | 1 19 2 4 15 | mplelf | |- ( ph -> Y : D --> ( Base ` R ) ) |
| 24 | 23 | ffvelcdmda | |- ( ( ph /\ b e. D ) -> ( Y ` b ) e. ( Base ` R ) ) |
| 25 | 22 24 | ffvelcdmd | |- ( ( ph /\ b e. D ) -> ( F ` ( Y ` b ) ) e. C ) |
| 26 | 5 3 | mgpbas | |- C = ( Base ` T ) |
| 27 | 5 | crngmgp | |- ( S e. CRing -> T e. CMnd ) |
| 28 | 12 27 | syl | |- ( ph -> T e. CMnd ) |
| 29 | 28 | adantr | |- ( ( ph /\ b e. D ) -> T e. CMnd ) |
| 30 | simpr | |- ( ( ph /\ b e. D ) -> b e. D ) |
|
| 31 | 14 | adantr | |- ( ( ph /\ b e. D ) -> G : I --> C ) |
| 32 | 4 26 6 29 30 31 | psrbagev2 | |- ( ( ph /\ b e. D ) -> ( T gsum ( b oF .^ G ) ) e. C ) |
| 33 | 3 7 | ringcl | |- ( ( S e. Ring /\ ( F ` ( Y ` b ) ) e. C /\ ( T gsum ( b oF .^ G ) ) e. C ) -> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) e. C ) |
| 34 | 18 25 32 33 | syl3anc | |- ( ( ph /\ b e. D ) -> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) e. C ) |
| 35 | 34 | fmpttd | |- ( ph -> ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) : D --> C ) |
| 36 | ovexd | |- ( ph -> ( NN0 ^m I ) e. _V ) |
|
| 37 | 4 36 | rabexd | |- ( ph -> D e. _V ) |
| 38 | 37 | mptexd | |- ( ph -> ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) e. _V ) |
| 39 | funmpt | |- Fun ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) |
|
| 40 | 39 | a1i | |- ( ph -> Fun ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) |
| 41 | fvexd | |- ( ph -> ( 0g ` S ) e. _V ) |
|
| 42 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 43 | 1 2 42 15 | mplelsfi | |- ( ph -> Y finSupp ( 0g ` R ) ) |
| 44 | 43 | fsuppimpd | |- ( ph -> ( Y supp ( 0g ` R ) ) e. Fin ) |
| 45 | 23 | feqmptd | |- ( ph -> Y = ( b e. D |-> ( Y ` b ) ) ) |
| 46 | 45 | oveq1d | |- ( ph -> ( Y supp ( 0g ` R ) ) = ( ( b e. D |-> ( Y ` b ) ) supp ( 0g ` R ) ) ) |
| 47 | eqimss2 | |- ( ( Y supp ( 0g ` R ) ) = ( ( b e. D |-> ( Y ` b ) ) supp ( 0g ` R ) ) -> ( ( b e. D |-> ( Y ` b ) ) supp ( 0g ` R ) ) C_ ( Y supp ( 0g ` R ) ) ) |
|
| 48 | 46 47 | syl | |- ( ph -> ( ( b e. D |-> ( Y ` b ) ) supp ( 0g ` R ) ) C_ ( Y supp ( 0g ` R ) ) ) |
| 49 | rhmghm | |- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
|
| 50 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 51 | 42 50 | ghmid | |- ( F e. ( R GrpHom S ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 52 | 13 49 51 | 3syl | |- ( ph -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 53 | fvexd | |- ( ( ph /\ b e. D ) -> ( Y ` b ) e. _V ) |
|
| 54 | fvexd | |- ( ph -> ( 0g ` R ) e. _V ) |
|
| 55 | 48 52 53 54 | suppssfv | |- ( ph -> ( ( b e. D |-> ( F ` ( Y ` b ) ) ) supp ( 0g ` S ) ) C_ ( Y supp ( 0g ` R ) ) ) |
| 56 | 3 7 50 | ringlz | |- ( ( S e. Ring /\ x e. C ) -> ( ( 0g ` S ) .x. x ) = ( 0g ` S ) ) |
| 57 | 17 56 | sylan | |- ( ( ph /\ x e. C ) -> ( ( 0g ` S ) .x. x ) = ( 0g ` S ) ) |
| 58 | fvexd | |- ( ( ph /\ b e. D ) -> ( F ` ( Y ` b ) ) e. _V ) |
|
| 59 | 55 57 58 32 41 | suppssov1 | |- ( ph -> ( ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) supp ( 0g ` S ) ) C_ ( Y supp ( 0g ` R ) ) ) |
| 60 | suppssfifsupp | |- ( ( ( ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) e. _V /\ Fun ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) /\ ( 0g ` S ) e. _V ) /\ ( ( Y supp ( 0g ` R ) ) e. Fin /\ ( ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) supp ( 0g ` S ) ) C_ ( Y supp ( 0g ` R ) ) ) ) -> ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) finSupp ( 0g ` S ) ) |
|
| 61 | 38 40 41 44 59 60 | syl32anc | |- ( ph -> ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) finSupp ( 0g ` S ) ) |
| 62 | 35 61 | jca | |- ( ph -> ( ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) : D --> C /\ ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) finSupp ( 0g ` S ) ) ) |