This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgpval.1 | |- M = ( mulGrp ` R ) |
|
| mgpval.2 | |- .x. = ( .r ` R ) |
||
| Assertion | mgpplusg | |- .x. = ( +g ` M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpval.1 | |- M = ( mulGrp ` R ) |
|
| 2 | mgpval.2 | |- .x. = ( .r ` R ) |
|
| 3 | 2 | fvexi | |- .x. e. _V |
| 4 | plusgid | |- +g = Slot ( +g ` ndx ) |
|
| 5 | 4 | setsid | |- ( ( R e. _V /\ .x. e. _V ) -> .x. = ( +g ` ( R sSet <. ( +g ` ndx ) , .x. >. ) ) ) |
| 6 | 3 5 | mpan2 | |- ( R e. _V -> .x. = ( +g ` ( R sSet <. ( +g ` ndx ) , .x. >. ) ) ) |
| 7 | 1 2 | mgpval | |- M = ( R sSet <. ( +g ` ndx ) , .x. >. ) |
| 8 | 7 | fveq2i | |- ( +g ` M ) = ( +g ` ( R sSet <. ( +g ` ndx ) , .x. >. ) ) |
| 9 | 6 8 | eqtr4di | |- ( R e. _V -> .x. = ( +g ` M ) ) |
| 10 | 4 | str0 | |- (/) = ( +g ` (/) ) |
| 11 | fvprc | |- ( -. R e. _V -> ( .r ` R ) = (/) ) |
|
| 12 | 2 11 | eqtrid | |- ( -. R e. _V -> .x. = (/) ) |
| 13 | fvprc | |- ( -. R e. _V -> ( mulGrp ` R ) = (/) ) |
|
| 14 | 1 13 | eqtrid | |- ( -. R e. _V -> M = (/) ) |
| 15 | 14 | fveq2d | |- ( -. R e. _V -> ( +g ` M ) = ( +g ` (/) ) ) |
| 16 | 10 12 15 | 3eqtr4a | |- ( -. R e. _V -> .x. = ( +g ` M ) ) |
| 17 | 9 16 | pm2.61i | |- .x. = ( +g ` M ) |