This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvrfval.v | |- V = ( I mVar R ) |
|
| mvrfval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| mvrfval.z | |- .0. = ( 0g ` R ) |
||
| mvrfval.o | |- .1. = ( 1r ` R ) |
||
| mvrfval.i | |- ( ph -> I e. W ) |
||
| mvrfval.r | |- ( ph -> R e. Y ) |
||
| mvrval.x | |- ( ph -> X e. I ) |
||
| Assertion | mvrval | |- ( ph -> ( V ` X ) = ( f e. D |-> if ( f = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrfval.v | |- V = ( I mVar R ) |
|
| 2 | mvrfval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 3 | mvrfval.z | |- .0. = ( 0g ` R ) |
|
| 4 | mvrfval.o | |- .1. = ( 1r ` R ) |
|
| 5 | mvrfval.i | |- ( ph -> I e. W ) |
|
| 6 | mvrfval.r | |- ( ph -> R e. Y ) |
|
| 7 | mvrval.x | |- ( ph -> X e. I ) |
|
| 8 | 1 2 3 4 5 6 | mvrfval | |- ( ph -> V = ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ) |
| 9 | 8 | fveq1d | |- ( ph -> ( V ` X ) = ( ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ` X ) ) |
| 10 | eqeq2 | |- ( x = X -> ( y = x <-> y = X ) ) |
|
| 11 | 10 | ifbid | |- ( x = X -> if ( y = x , 1 , 0 ) = if ( y = X , 1 , 0 ) ) |
| 12 | 11 | mpteq2dv | |- ( x = X -> ( y e. I |-> if ( y = x , 1 , 0 ) ) = ( y e. I |-> if ( y = X , 1 , 0 ) ) ) |
| 13 | 12 | eqeq2d | |- ( x = X -> ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) <-> f = ( y e. I |-> if ( y = X , 1 , 0 ) ) ) ) |
| 14 | 13 | ifbid | |- ( x = X -> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) = if ( f = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) ) |
| 15 | 14 | mpteq2dv | |- ( x = X -> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) = ( f e. D |-> if ( f = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) ) ) |
| 16 | eqid | |- ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) = ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) |
|
| 17 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 18 | 2 17 | rabex2 | |- D e. _V |
| 19 | 18 | mptex | |- ( f e. D |-> if ( f = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) ) e. _V |
| 20 | 15 16 19 | fvmpt | |- ( X e. I -> ( ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ` X ) = ( f e. D |-> if ( f = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) ) ) |
| 21 | 7 20 | syl | |- ( ph -> ( ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ` X ) = ( f e. D |-> if ( f = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) ) ) |
| 22 | 9 21 | eqtrd | |- ( ph -> ( V ` X ) = ( f e. D |-> if ( f = ( y e. I |-> if ( y = X , 1 , 0 ) ) , .1. , .0. ) ) ) |