This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power series/polynomial variable function maps indices to polynomials. (Contributed by Stefan O'Rear, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvrf2.p | |- P = ( I mPoly R ) |
|
| mvrf2.v | |- V = ( I mVar R ) |
||
| mvrf2.b | |- B = ( Base ` P ) |
||
| mvrf2.i | |- ( ph -> I e. W ) |
||
| mvrf2.r | |- ( ph -> R e. Ring ) |
||
| Assertion | mvrf2 | |- ( ph -> V : I --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrf2.p | |- P = ( I mPoly R ) |
|
| 2 | mvrf2.v | |- V = ( I mVar R ) |
|
| 3 | mvrf2.b | |- B = ( Base ` P ) |
|
| 4 | mvrf2.i | |- ( ph -> I e. W ) |
|
| 5 | mvrf2.r | |- ( ph -> R e. Ring ) |
|
| 6 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 7 | eqid | |- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
|
| 8 | 6 2 7 4 5 | mvrf | |- ( ph -> V : I --> ( Base ` ( I mPwSer R ) ) ) |
| 9 | 8 | ffnd | |- ( ph -> V Fn I ) |
| 10 | 4 | adantr | |- ( ( ph /\ x e. I ) -> I e. W ) |
| 11 | 5 | adantr | |- ( ( ph /\ x e. I ) -> R e. Ring ) |
| 12 | simpr | |- ( ( ph /\ x e. I ) -> x e. I ) |
|
| 13 | 1 2 3 10 11 12 | mvrcl | |- ( ( ph /\ x e. I ) -> ( V ` x ) e. B ) |
| 14 | 13 | ralrimiva | |- ( ph -> A. x e. I ( V ` x ) e. B ) |
| 15 | ffnfv | |- ( V : I --> B <-> ( V Fn I /\ A. x e. I ( V ` x ) e. B ) ) |
|
| 16 | 9 14 15 | sylanbrc | |- ( ph -> V : I --> B ) |