This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulg1.b | |- B = ( Base ` G ) |
|
| mulg1.m | |- .x. = ( .g ` G ) |
||
| Assertion | mulg1 | |- ( X e. B -> ( 1 .x. X ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulg1.b | |- B = ( Base ` G ) |
|
| 2 | mulg1.m | |- .x. = ( .g ` G ) |
|
| 3 | 1nn | |- 1 e. NN |
|
| 4 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 5 | eqid | |- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) |
|
| 6 | 1 4 2 5 | mulgnn | |- ( ( 1 e. NN /\ X e. B ) -> ( 1 .x. X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` 1 ) ) |
| 7 | 3 6 | mpan | |- ( X e. B -> ( 1 .x. X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` 1 ) ) |
| 8 | 1z | |- 1 e. ZZ |
|
| 9 | fvconst2g | |- ( ( X e. B /\ 1 e. NN ) -> ( ( NN X. { X } ) ` 1 ) = X ) |
|
| 10 | 3 9 | mpan2 | |- ( X e. B -> ( ( NN X. { X } ) ` 1 ) = X ) |
| 11 | 8 10 | seq1i | |- ( X e. B -> ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` 1 ) = X ) |
| 12 | 7 11 | eqtrd | |- ( X e. B -> ( 1 .x. X ) = X ) |