This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for evlseu . Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015) (Revised by AV, 11-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlslem3.p | |- P = ( I mPoly R ) |
|
| evlslem3.b | |- B = ( Base ` P ) |
||
| evlslem3.c | |- C = ( Base ` S ) |
||
| evlslem3.k | |- K = ( Base ` R ) |
||
| evlslem3.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| evlslem3.t | |- T = ( mulGrp ` S ) |
||
| evlslem3.x | |- .^ = ( .g ` T ) |
||
| evlslem3.m | |- .x. = ( .r ` S ) |
||
| evlslem3.v | |- V = ( I mVar R ) |
||
| evlslem3.e | |- E = ( p e. B |-> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
||
| evlslem3.i | |- ( ph -> I e. W ) |
||
| evlslem3.r | |- ( ph -> R e. CRing ) |
||
| evlslem3.s | |- ( ph -> S e. CRing ) |
||
| evlslem3.f | |- ( ph -> F e. ( R RingHom S ) ) |
||
| evlslem3.g | |- ( ph -> G : I --> C ) |
||
| evlslem3.z | |- .0. = ( 0g ` R ) |
||
| evlslem3.a | |- ( ph -> A e. D ) |
||
| evlslem3.q | |- ( ph -> H e. K ) |
||
| Assertion | evlslem3 | |- ( ph -> ( E ` ( x e. D |-> if ( x = A , H , .0. ) ) ) = ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlslem3.p | |- P = ( I mPoly R ) |
|
| 2 | evlslem3.b | |- B = ( Base ` P ) |
|
| 3 | evlslem3.c | |- C = ( Base ` S ) |
|
| 4 | evlslem3.k | |- K = ( Base ` R ) |
|
| 5 | evlslem3.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 6 | evlslem3.t | |- T = ( mulGrp ` S ) |
|
| 7 | evlslem3.x | |- .^ = ( .g ` T ) |
|
| 8 | evlslem3.m | |- .x. = ( .r ` S ) |
|
| 9 | evlslem3.v | |- V = ( I mVar R ) |
|
| 10 | evlslem3.e | |- E = ( p e. B |-> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
|
| 11 | evlslem3.i | |- ( ph -> I e. W ) |
|
| 12 | evlslem3.r | |- ( ph -> R e. CRing ) |
|
| 13 | evlslem3.s | |- ( ph -> S e. CRing ) |
|
| 14 | evlslem3.f | |- ( ph -> F e. ( R RingHom S ) ) |
|
| 15 | evlslem3.g | |- ( ph -> G : I --> C ) |
|
| 16 | evlslem3.z | |- .0. = ( 0g ` R ) |
|
| 17 | evlslem3.a | |- ( ph -> A e. D ) |
|
| 18 | evlslem3.q | |- ( ph -> H e. K ) |
|
| 19 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 20 | 12 19 | syl | |- ( ph -> R e. Ring ) |
| 21 | 1 5 16 4 11 20 2 18 17 | mplmon2cl | |- ( ph -> ( x e. D |-> if ( x = A , H , .0. ) ) e. B ) |
| 22 | fveq1 | |- ( p = ( x e. D |-> if ( x = A , H , .0. ) ) -> ( p ` b ) = ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) |
|
| 23 | 22 | fveq2d | |- ( p = ( x e. D |-> if ( x = A , H , .0. ) ) -> ( F ` ( p ` b ) ) = ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) ) |
| 24 | 23 | oveq1d | |- ( p = ( x e. D |-> if ( x = A , H , .0. ) ) -> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) |
| 25 | 24 | mpteq2dv | |- ( p = ( x e. D |-> if ( x = A , H , .0. ) ) -> ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) |
| 26 | 25 | oveq2d | |- ( p = ( x e. D |-> if ( x = A , H , .0. ) ) -> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 27 | ovex | |- ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) e. _V |
|
| 28 | 26 10 27 | fvmpt | |- ( ( x e. D |-> if ( x = A , H , .0. ) ) e. B -> ( E ` ( x e. D |-> if ( x = A , H , .0. ) ) ) = ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 29 | 21 28 | syl | |- ( ph -> ( E ` ( x e. D |-> if ( x = A , H , .0. ) ) ) = ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 30 | eqid | |- ( x e. D |-> if ( x = A , H , .0. ) ) = ( x e. D |-> if ( x = A , H , .0. ) ) |
|
| 31 | eqeq1 | |- ( x = b -> ( x = A <-> b = A ) ) |
|
| 32 | 31 | ifbid | |- ( x = b -> if ( x = A , H , .0. ) = if ( b = A , H , .0. ) ) |
| 33 | simpr | |- ( ( ph /\ b e. D ) -> b e. D ) |
|
| 34 | 16 | fvexi | |- .0. e. _V |
| 35 | 34 | a1i | |- ( ph -> .0. e. _V ) |
| 36 | 18 35 | ifexd | |- ( ph -> if ( b = A , H , .0. ) e. _V ) |
| 37 | 36 | adantr | |- ( ( ph /\ b e. D ) -> if ( b = A , H , .0. ) e. _V ) |
| 38 | 30 32 33 37 | fvmptd3 | |- ( ( ph /\ b e. D ) -> ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) = if ( b = A , H , .0. ) ) |
| 39 | 38 | fveq2d | |- ( ( ph /\ b e. D ) -> ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) = ( F ` if ( b = A , H , .0. ) ) ) |
| 40 | 39 | oveq1d | |- ( ( ph /\ b e. D ) -> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) |
| 41 | 40 | mpteq2dva | |- ( ph -> ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) |
| 42 | 41 | oveq2d | |- ( ph -> ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( S gsum ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 43 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 44 | crngring | |- ( S e. CRing -> S e. Ring ) |
|
| 45 | 13 44 | syl | |- ( ph -> S e. Ring ) |
| 46 | ringmnd | |- ( S e. Ring -> S e. Mnd ) |
|
| 47 | 45 46 | syl | |- ( ph -> S e. Mnd ) |
| 48 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 49 | 5 48 | rabex2 | |- D e. _V |
| 50 | 49 | a1i | |- ( ph -> D e. _V ) |
| 51 | 45 | adantr | |- ( ( ph /\ b e. D ) -> S e. Ring ) |
| 52 | 4 3 | rhmf | |- ( F e. ( R RingHom S ) -> F : K --> C ) |
| 53 | 14 52 | syl | |- ( ph -> F : K --> C ) |
| 54 | 4 16 | ring0cl | |- ( R e. Ring -> .0. e. K ) |
| 55 | 20 54 | syl | |- ( ph -> .0. e. K ) |
| 56 | 18 55 | ifcld | |- ( ph -> if ( b = A , H , .0. ) e. K ) |
| 57 | 53 56 | ffvelcdmd | |- ( ph -> ( F ` if ( b = A , H , .0. ) ) e. C ) |
| 58 | 57 | adantr | |- ( ( ph /\ b e. D ) -> ( F ` if ( b = A , H , .0. ) ) e. C ) |
| 59 | 6 3 | mgpbas | |- C = ( Base ` T ) |
| 60 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 61 | 6 | crngmgp | |- ( S e. CRing -> T e. CMnd ) |
| 62 | 13 61 | syl | |- ( ph -> T e. CMnd ) |
| 63 | 62 | adantr | |- ( ( ph /\ b e. D ) -> T e. CMnd ) |
| 64 | 11 | adantr | |- ( ( ph /\ b e. D ) -> I e. W ) |
| 65 | cmnmnd | |- ( T e. CMnd -> T e. Mnd ) |
|
| 66 | 62 65 | syl | |- ( ph -> T e. Mnd ) |
| 67 | 66 | ad2antrr | |- ( ( ( ph /\ b e. D ) /\ ( y e. NN0 /\ z e. C ) ) -> T e. Mnd ) |
| 68 | simprl | |- ( ( ( ph /\ b e. D ) /\ ( y e. NN0 /\ z e. C ) ) -> y e. NN0 ) |
|
| 69 | simprr | |- ( ( ( ph /\ b e. D ) /\ ( y e. NN0 /\ z e. C ) ) -> z e. C ) |
|
| 70 | 59 7 67 68 69 | mulgnn0cld | |- ( ( ( ph /\ b e. D ) /\ ( y e. NN0 /\ z e. C ) ) -> ( y .^ z ) e. C ) |
| 71 | 5 | psrbagf | |- ( b e. D -> b : I --> NN0 ) |
| 72 | 71 | adantl | |- ( ( ph /\ b e. D ) -> b : I --> NN0 ) |
| 73 | 15 | adantr | |- ( ( ph /\ b e. D ) -> G : I --> C ) |
| 74 | inidm | |- ( I i^i I ) = I |
|
| 75 | 70 72 73 64 64 74 | off | |- ( ( ph /\ b e. D ) -> ( b oF .^ G ) : I --> C ) |
| 76 | ovex | |- ( b oF .^ G ) e. _V |
|
| 77 | 76 | a1i | |- ( ( ph /\ b e. D ) -> ( b oF .^ G ) e. _V ) |
| 78 | 75 | ffund | |- ( ( ph /\ b e. D ) -> Fun ( b oF .^ G ) ) |
| 79 | fvexd | |- ( ( ph /\ b e. D ) -> ( 0g ` T ) e. _V ) |
|
| 80 | 5 | psrbag | |- ( I e. W -> ( b e. D <-> ( b : I --> NN0 /\ ( `' b " NN ) e. Fin ) ) ) |
| 81 | 11 80 | syl | |- ( ph -> ( b e. D <-> ( b : I --> NN0 /\ ( `' b " NN ) e. Fin ) ) ) |
| 82 | 81 | simplbda | |- ( ( ph /\ b e. D ) -> ( `' b " NN ) e. Fin ) |
| 83 | 72 | ffnd | |- ( ( ph /\ b e. D ) -> b Fn I ) |
| 84 | 83 | adantr | |- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> b Fn I ) |
| 85 | 15 | ffnd | |- ( ph -> G Fn I ) |
| 86 | 85 | ad2antrr | |- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> G Fn I ) |
| 87 | 11 | ad2antrr | |- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> I e. W ) |
| 88 | eldifi | |- ( y e. ( I \ ( `' b " NN ) ) -> y e. I ) |
|
| 89 | 88 | adantl | |- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> y e. I ) |
| 90 | fnfvof | |- ( ( ( b Fn I /\ G Fn I ) /\ ( I e. W /\ y e. I ) ) -> ( ( b oF .^ G ) ` y ) = ( ( b ` y ) .^ ( G ` y ) ) ) |
|
| 91 | 84 86 87 89 90 | syl22anc | |- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( ( b oF .^ G ) ` y ) = ( ( b ` y ) .^ ( G ` y ) ) ) |
| 92 | ffvelcdm | |- ( ( b : I --> NN0 /\ y e. I ) -> ( b ` y ) e. NN0 ) |
|
| 93 | 72 88 92 | syl2an | |- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( b ` y ) e. NN0 ) |
| 94 | elnn0 | |- ( ( b ` y ) e. NN0 <-> ( ( b ` y ) e. NN \/ ( b ` y ) = 0 ) ) |
|
| 95 | 93 94 | sylib | |- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( ( b ` y ) e. NN \/ ( b ` y ) = 0 ) ) |
| 96 | eldifn | |- ( y e. ( I \ ( `' b " NN ) ) -> -. y e. ( `' b " NN ) ) |
|
| 97 | 96 | adantl | |- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> -. y e. ( `' b " NN ) ) |
| 98 | 83 | ad2antrr | |- ( ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) /\ ( b ` y ) e. NN ) -> b Fn I ) |
| 99 | 88 | ad2antlr | |- ( ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) /\ ( b ` y ) e. NN ) -> y e. I ) |
| 100 | simpr | |- ( ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) /\ ( b ` y ) e. NN ) -> ( b ` y ) e. NN ) |
|
| 101 | 98 99 100 | elpreimad | |- ( ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) /\ ( b ` y ) e. NN ) -> y e. ( `' b " NN ) ) |
| 102 | 97 101 | mtand | |- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> -. ( b ` y ) e. NN ) |
| 103 | 95 102 | orcnd | |- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( b ` y ) = 0 ) |
| 104 | 103 | oveq1d | |- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( ( b ` y ) .^ ( G ` y ) ) = ( 0 .^ ( G ` y ) ) ) |
| 105 | ffvelcdm | |- ( ( G : I --> C /\ y e. I ) -> ( G ` y ) e. C ) |
|
| 106 | 73 88 105 | syl2an | |- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( G ` y ) e. C ) |
| 107 | 59 60 7 | mulg0 | |- ( ( G ` y ) e. C -> ( 0 .^ ( G ` y ) ) = ( 0g ` T ) ) |
| 108 | 106 107 | syl | |- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( 0 .^ ( G ` y ) ) = ( 0g ` T ) ) |
| 109 | 91 104 108 | 3eqtrd | |- ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( ( b oF .^ G ) ` y ) = ( 0g ` T ) ) |
| 110 | 75 109 | suppss | |- ( ( ph /\ b e. D ) -> ( ( b oF .^ G ) supp ( 0g ` T ) ) C_ ( `' b " NN ) ) |
| 111 | suppssfifsupp | |- ( ( ( ( b oF .^ G ) e. _V /\ Fun ( b oF .^ G ) /\ ( 0g ` T ) e. _V ) /\ ( ( `' b " NN ) e. Fin /\ ( ( b oF .^ G ) supp ( 0g ` T ) ) C_ ( `' b " NN ) ) ) -> ( b oF .^ G ) finSupp ( 0g ` T ) ) |
|
| 112 | 77 78 79 82 110 111 | syl32anc | |- ( ( ph /\ b e. D ) -> ( b oF .^ G ) finSupp ( 0g ` T ) ) |
| 113 | 59 60 63 64 75 112 | gsumcl | |- ( ( ph /\ b e. D ) -> ( T gsum ( b oF .^ G ) ) e. C ) |
| 114 | 3 8 | ringcl | |- ( ( S e. Ring /\ ( F ` if ( b = A , H , .0. ) ) e. C /\ ( T gsum ( b oF .^ G ) ) e. C ) -> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) e. C ) |
| 115 | 51 58 113 114 | syl3anc | |- ( ( ph /\ b e. D ) -> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) e. C ) |
| 116 | 115 | fmpttd | |- ( ph -> ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) : D --> C ) |
| 117 | eldifsnneq | |- ( b e. ( D \ { A } ) -> -. b = A ) |
|
| 118 | 117 | iffalsed | |- ( b e. ( D \ { A } ) -> if ( b = A , H , .0. ) = .0. ) |
| 119 | 118 | adantl | |- ( ( ph /\ b e. ( D \ { A } ) ) -> if ( b = A , H , .0. ) = .0. ) |
| 120 | 119 | fveq2d | |- ( ( ph /\ b e. ( D \ { A } ) ) -> ( F ` if ( b = A , H , .0. ) ) = ( F ` .0. ) ) |
| 121 | rhmghm | |- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
|
| 122 | 14 121 | syl | |- ( ph -> F e. ( R GrpHom S ) ) |
| 123 | 16 43 | ghmid | |- ( F e. ( R GrpHom S ) -> ( F ` .0. ) = ( 0g ` S ) ) |
| 124 | 122 123 | syl | |- ( ph -> ( F ` .0. ) = ( 0g ` S ) ) |
| 125 | 124 | adantr | |- ( ( ph /\ b e. ( D \ { A } ) ) -> ( F ` .0. ) = ( 0g ` S ) ) |
| 126 | 120 125 | eqtrd | |- ( ( ph /\ b e. ( D \ { A } ) ) -> ( F ` if ( b = A , H , .0. ) ) = ( 0g ` S ) ) |
| 127 | 126 | oveq1d | |- ( ( ph /\ b e. ( D \ { A } ) ) -> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( 0g ` S ) .x. ( T gsum ( b oF .^ G ) ) ) ) |
| 128 | 45 | adantr | |- ( ( ph /\ b e. ( D \ { A } ) ) -> S e. Ring ) |
| 129 | eldifi | |- ( b e. ( D \ { A } ) -> b e. D ) |
|
| 130 | 129 113 | sylan2 | |- ( ( ph /\ b e. ( D \ { A } ) ) -> ( T gsum ( b oF .^ G ) ) e. C ) |
| 131 | 3 8 43 | ringlz | |- ( ( S e. Ring /\ ( T gsum ( b oF .^ G ) ) e. C ) -> ( ( 0g ` S ) .x. ( T gsum ( b oF .^ G ) ) ) = ( 0g ` S ) ) |
| 132 | 128 130 131 | syl2anc | |- ( ( ph /\ b e. ( D \ { A } ) ) -> ( ( 0g ` S ) .x. ( T gsum ( b oF .^ G ) ) ) = ( 0g ` S ) ) |
| 133 | 127 132 | eqtrd | |- ( ( ph /\ b e. ( D \ { A } ) ) -> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( 0g ` S ) ) |
| 134 | 133 50 | suppss2 | |- ( ph -> ( ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) supp ( 0g ` S ) ) C_ { A } ) |
| 135 | 3 43 47 50 17 116 134 | gsumpt | |- ( ph -> ( S gsum ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ` A ) ) |
| 136 | 42 135 | eqtrd | |- ( ph -> ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ` A ) ) |
| 137 | iftrue | |- ( b = A -> if ( b = A , H , .0. ) = H ) |
|
| 138 | 137 | fveq2d | |- ( b = A -> ( F ` if ( b = A , H , .0. ) ) = ( F ` H ) ) |
| 139 | oveq1 | |- ( b = A -> ( b oF .^ G ) = ( A oF .^ G ) ) |
|
| 140 | 139 | oveq2d | |- ( b = A -> ( T gsum ( b oF .^ G ) ) = ( T gsum ( A oF .^ G ) ) ) |
| 141 | 138 140 | oveq12d | |- ( b = A -> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) ) |
| 142 | eqid | |- ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) |
|
| 143 | ovex | |- ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) e. _V |
|
| 144 | 141 142 143 | fvmpt | |- ( A e. D -> ( ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ` A ) = ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) ) |
| 145 | 17 144 | syl | |- ( ph -> ( ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ` A ) = ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) ) |
| 146 | 29 136 145 | 3eqtrd | |- ( ph -> ( E ` ( x e. D |-> if ( x = A , H , .0. ) ) ) = ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) ) |