This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 18-Jul-2019) (Revised by AV, 11-Apr-2024) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrbagev1.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| psrbagev1.c | |- C = ( Base ` T ) |
||
| psrbagev1.x | |- .x. = ( .g ` T ) |
||
| psrbagev1.z | |- .0. = ( 0g ` T ) |
||
| psrbagev1.t | |- ( ph -> T e. CMnd ) |
||
| psrbagev1.b | |- ( ph -> B e. D ) |
||
| psrbagev1.g | |- ( ph -> G : I --> C ) |
||
| Assertion | psrbagev1 | |- ( ph -> ( ( B oF .x. G ) : I --> C /\ ( B oF .x. G ) finSupp .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbagev1.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 2 | psrbagev1.c | |- C = ( Base ` T ) |
|
| 3 | psrbagev1.x | |- .x. = ( .g ` T ) |
|
| 4 | psrbagev1.z | |- .0. = ( 0g ` T ) |
|
| 5 | psrbagev1.t | |- ( ph -> T e. CMnd ) |
|
| 6 | psrbagev1.b | |- ( ph -> B e. D ) |
|
| 7 | psrbagev1.g | |- ( ph -> G : I --> C ) |
|
| 8 | 5 | cmnmndd | |- ( ph -> T e. Mnd ) |
| 9 | 2 3 | mulgnn0cl | |- ( ( T e. Mnd /\ y e. NN0 /\ z e. C ) -> ( y .x. z ) e. C ) |
| 10 | 9 | 3expb | |- ( ( T e. Mnd /\ ( y e. NN0 /\ z e. C ) ) -> ( y .x. z ) e. C ) |
| 11 | 8 10 | sylan | |- ( ( ph /\ ( y e. NN0 /\ z e. C ) ) -> ( y .x. z ) e. C ) |
| 12 | 1 | psrbagf | |- ( B e. D -> B : I --> NN0 ) |
| 13 | 6 12 | syl | |- ( ph -> B : I --> NN0 ) |
| 14 | 13 | ffnd | |- ( ph -> B Fn I ) |
| 15 | 6 14 | fndmexd | |- ( ph -> I e. _V ) |
| 16 | inidm | |- ( I i^i I ) = I |
|
| 17 | 11 13 7 15 15 16 | off | |- ( ph -> ( B oF .x. G ) : I --> C ) |
| 18 | ovexd | |- ( ph -> ( B oF .x. G ) e. _V ) |
|
| 19 | 7 | ffnd | |- ( ph -> G Fn I ) |
| 20 | 14 19 15 15 | offun | |- ( ph -> Fun ( B oF .x. G ) ) |
| 21 | 4 | fvexi | |- .0. e. _V |
| 22 | 21 | a1i | |- ( ph -> .0. e. _V ) |
| 23 | 1 | psrbagfsupp | |- ( B e. D -> B finSupp 0 ) |
| 24 | 6 23 | syl | |- ( ph -> B finSupp 0 ) |
| 25 | 24 | fsuppimpd | |- ( ph -> ( B supp 0 ) e. Fin ) |
| 26 | ssidd | |- ( ph -> ( B supp 0 ) C_ ( B supp 0 ) ) |
|
| 27 | 2 4 3 | mulg0 | |- ( z e. C -> ( 0 .x. z ) = .0. ) |
| 28 | 27 | adantl | |- ( ( ph /\ z e. C ) -> ( 0 .x. z ) = .0. ) |
| 29 | c0ex | |- 0 e. _V |
|
| 30 | 29 | a1i | |- ( ph -> 0 e. _V ) |
| 31 | 26 28 13 7 15 30 | suppssof1 | |- ( ph -> ( ( B oF .x. G ) supp .0. ) C_ ( B supp 0 ) ) |
| 32 | suppssfifsupp | |- ( ( ( ( B oF .x. G ) e. _V /\ Fun ( B oF .x. G ) /\ .0. e. _V ) /\ ( ( B supp 0 ) e. Fin /\ ( ( B oF .x. G ) supp .0. ) C_ ( B supp 0 ) ) ) -> ( B oF .x. G ) finSupp .0. ) |
|
| 33 | 18 20 22 25 31 32 | syl32anc | |- ( ph -> ( B oF .x. G ) finSupp .0. ) |
| 34 | 17 33 | jca | |- ( ph -> ( ( B oF .x. G ) : I --> C /\ ( B oF .x. G ) finSupp .0. ) ) |