This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gsumz.z | |- .0. = ( 0g ` G ) |
|
| Assertion | gsumz | |- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumz.z | |- .0. = ( 0g ` G ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 4 | eqid | |- { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } = { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } |
|
| 5 | simpl | |- ( ( G e. Mnd /\ A e. V ) -> G e. Mnd ) |
|
| 6 | simpr | |- ( ( G e. Mnd /\ A e. V ) -> A e. V ) |
|
| 7 | 1 | fvexi | |- .0. e. _V |
| 8 | 7 | snid | |- .0. e. { .0. } |
| 9 | 2 1 3 4 | gsumvallem2 | |- ( G e. Mnd -> { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } = { .0. } ) |
| 10 | 8 9 | eleqtrrid | |- ( G e. Mnd -> .0. e. { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } ) |
| 11 | 10 | ad2antrr | |- ( ( ( G e. Mnd /\ A e. V ) /\ k e. A ) -> .0. e. { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } ) |
| 12 | 11 | fmpttd | |- ( ( G e. Mnd /\ A e. V ) -> ( k e. A |-> .0. ) : A --> { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } ) |
| 13 | 2 1 3 4 5 6 12 | gsumval1 | |- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |