This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringidval.g | |- G = ( mulGrp ` R ) |
|
| ringidval.u | |- .1. = ( 1r ` R ) |
||
| Assertion | ringidval | |- .1. = ( 0g ` G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringidval.g | |- G = ( mulGrp ` R ) |
|
| 2 | ringidval.u | |- .1. = ( 1r ` R ) |
|
| 3 | df-ur | |- 1r = ( 0g o. mulGrp ) |
|
| 4 | 3 | fveq1i | |- ( 1r ` R ) = ( ( 0g o. mulGrp ) ` R ) |
| 5 | fnmgp | |- mulGrp Fn _V |
|
| 6 | fvco2 | |- ( ( mulGrp Fn _V /\ R e. _V ) -> ( ( 0g o. mulGrp ) ` R ) = ( 0g ` ( mulGrp ` R ) ) ) |
|
| 7 | 5 6 | mpan | |- ( R e. _V -> ( ( 0g o. mulGrp ) ` R ) = ( 0g ` ( mulGrp ` R ) ) ) |
| 8 | 4 7 | eqtrid | |- ( R e. _V -> ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) ) |
| 9 | 0g0 | |- (/) = ( 0g ` (/) ) |
|
| 10 | fvprc | |- ( -. R e. _V -> ( 1r ` R ) = (/) ) |
|
| 11 | fvprc | |- ( -. R e. _V -> ( mulGrp ` R ) = (/) ) |
|
| 12 | 11 | fveq2d | |- ( -. R e. _V -> ( 0g ` ( mulGrp ` R ) ) = ( 0g ` (/) ) ) |
| 13 | 9 10 12 | 3eqtr4a | |- ( -. R e. _V -> ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) ) |
| 14 | 8 13 | pm2.61i | |- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
| 15 | 1 | fveq2i | |- ( 0g ` G ) = ( 0g ` ( mulGrp ` R ) ) |
| 16 | 14 2 15 | 3eqtr4i | |- .1. = ( 0g ` G ) |