This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isghmd.x | |- X = ( Base ` S ) |
|
| isghmd.y | |- Y = ( Base ` T ) |
||
| isghmd.a | |- .+ = ( +g ` S ) |
||
| isghmd.b | |- .+^ = ( +g ` T ) |
||
| isghmd.s | |- ( ph -> S e. Grp ) |
||
| isghmd.t | |- ( ph -> T e. Grp ) |
||
| isghmd.f | |- ( ph -> F : X --> Y ) |
||
| isghmd.l | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
||
| Assertion | isghmd | |- ( ph -> F e. ( S GrpHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isghmd.x | |- X = ( Base ` S ) |
|
| 2 | isghmd.y | |- Y = ( Base ` T ) |
|
| 3 | isghmd.a | |- .+ = ( +g ` S ) |
|
| 4 | isghmd.b | |- .+^ = ( +g ` T ) |
|
| 5 | isghmd.s | |- ( ph -> S e. Grp ) |
|
| 6 | isghmd.t | |- ( ph -> T e. Grp ) |
|
| 7 | isghmd.f | |- ( ph -> F : X --> Y ) |
|
| 8 | isghmd.l | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
| 9 | 8 | ralrimivva | |- ( ph -> A. x e. X A. y e. X ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
| 10 | 7 9 | jca | |- ( ph -> ( F : X --> Y /\ A. x e. X A. y e. X ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) ) |
| 11 | 1 2 3 4 | isghm | |- ( F e. ( S GrpHom T ) <-> ( ( S e. Grp /\ T e. Grp ) /\ ( F : X --> Y /\ A. x e. X A. y e. X ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) ) ) |
| 12 | 5 6 10 11 | syl21anbrc | |- ( ph -> F e. ( S GrpHom T ) ) |