This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two finite bags is a finite bag. (Contributed by Mario Carneiro, 9-Jan-2015) Shorten proof and remove a sethood antecedent. (Revised by SN, 7-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbag.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| Assertion | psrbagaddcl | |- ( ( F e. D /\ G e. D ) -> ( F oF + G ) e. D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 2 | nn0addcl | |- ( ( x e. NN0 /\ y e. NN0 ) -> ( x + y ) e. NN0 ) |
|
| 3 | 2 | adantl | |- ( ( ( F e. D /\ G e. D ) /\ ( x e. NN0 /\ y e. NN0 ) ) -> ( x + y ) e. NN0 ) |
| 4 | 1 | psrbagf | |- ( F e. D -> F : I --> NN0 ) |
| 5 | 4 | adantr | |- ( ( F e. D /\ G e. D ) -> F : I --> NN0 ) |
| 6 | 1 | psrbagf | |- ( G e. D -> G : I --> NN0 ) |
| 7 | 6 | adantl | |- ( ( F e. D /\ G e. D ) -> G : I --> NN0 ) |
| 8 | simpl | |- ( ( F e. D /\ G e. D ) -> F e. D ) |
|
| 9 | 5 | ffnd | |- ( ( F e. D /\ G e. D ) -> F Fn I ) |
| 10 | 8 9 | fndmexd | |- ( ( F e. D /\ G e. D ) -> I e. _V ) |
| 11 | inidm | |- ( I i^i I ) = I |
|
| 12 | 3 5 7 10 10 11 | off | |- ( ( F e. D /\ G e. D ) -> ( F oF + G ) : I --> NN0 ) |
| 13 | ovex | |- ( F oF + G ) e. _V |
|
| 14 | fcdmnn0suppg | |- ( ( ( F oF + G ) e. _V /\ ( F oF + G ) : I --> NN0 ) -> ( ( F oF + G ) supp 0 ) = ( `' ( F oF + G ) " NN ) ) |
|
| 15 | 13 12 14 | sylancr | |- ( ( F e. D /\ G e. D ) -> ( ( F oF + G ) supp 0 ) = ( `' ( F oF + G ) " NN ) ) |
| 16 | 1 | psrbagfsupp | |- ( F e. D -> F finSupp 0 ) |
| 17 | 16 | adantr | |- ( ( F e. D /\ G e. D ) -> F finSupp 0 ) |
| 18 | 1 | psrbagfsupp | |- ( G e. D -> G finSupp 0 ) |
| 19 | 18 | adantl | |- ( ( F e. D /\ G e. D ) -> G finSupp 0 ) |
| 20 | 17 19 | fsuppunfi | |- ( ( F e. D /\ G e. D ) -> ( ( F supp 0 ) u. ( G supp 0 ) ) e. Fin ) |
| 21 | 0nn0 | |- 0 e. NN0 |
|
| 22 | 21 | a1i | |- ( ( F e. D /\ G e. D ) -> 0 e. NN0 ) |
| 23 | 00id | |- ( 0 + 0 ) = 0 |
|
| 24 | 23 | a1i | |- ( ( F e. D /\ G e. D ) -> ( 0 + 0 ) = 0 ) |
| 25 | 10 22 5 7 24 | suppofssd | |- ( ( F e. D /\ G e. D ) -> ( ( F oF + G ) supp 0 ) C_ ( ( F supp 0 ) u. ( G supp 0 ) ) ) |
| 26 | 20 25 | ssfid | |- ( ( F e. D /\ G e. D ) -> ( ( F oF + G ) supp 0 ) e. Fin ) |
| 27 | 15 26 | eqeltrrd | |- ( ( F e. D /\ G e. D ) -> ( `' ( F oF + G ) " NN ) e. Fin ) |
| 28 | 1 | psrbag | |- ( I e. _V -> ( ( F oF + G ) e. D <-> ( ( F oF + G ) : I --> NN0 /\ ( `' ( F oF + G ) " NN ) e. Fin ) ) ) |
| 29 | 10 28 | syl | |- ( ( F e. D /\ G e. D ) -> ( ( F oF + G ) e. D <-> ( ( F oF + G ) : I --> NN0 /\ ( `' ( F oF + G ) " NN ) e. Fin ) ) ) |
| 30 | 12 27 29 | mpbir2and | |- ( ( F e. D /\ G e. D ) -> ( F oF + G ) e. D ) |