This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar field of a multivariate polynomial structure. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplsca.p | |- P = ( I mPoly R ) |
|
| mplsca.i | |- ( ph -> I e. V ) |
||
| mplsca.r | |- ( ph -> R e. W ) |
||
| Assertion | mplsca | |- ( ph -> R = ( Scalar ` P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsca.p | |- P = ( I mPoly R ) |
|
| 2 | mplsca.i | |- ( ph -> I e. V ) |
|
| 3 | mplsca.r | |- ( ph -> R e. W ) |
|
| 4 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 5 | 4 2 3 | psrsca | |- ( ph -> R = ( Scalar ` ( I mPwSer R ) ) ) |
| 6 | fvex | |- ( Base ` P ) e. _V |
|
| 7 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 8 | 1 4 7 | mplval2 | |- P = ( ( I mPwSer R ) |`s ( Base ` P ) ) |
| 9 | eqid | |- ( Scalar ` ( I mPwSer R ) ) = ( Scalar ` ( I mPwSer R ) ) |
|
| 10 | 8 9 | resssca | |- ( ( Base ` P ) e. _V -> ( Scalar ` ( I mPwSer R ) ) = ( Scalar ` P ) ) |
| 11 | 6 10 | ax-mp | |- ( Scalar ` ( I mPwSer R ) ) = ( Scalar ` P ) |
| 12 | 5 11 | eqtrdi | |- ( ph -> R = ( Scalar ` P ) ) |