This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of group multiples, generalized to NN0 . (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnndir.b | |- B = ( Base ` G ) |
|
| mulgnndir.t | |- .x. = ( .g ` G ) |
||
| mulgnndir.p | |- .+ = ( +g ` G ) |
||
| Assertion | mulgnn0dir | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnndir.b | |- B = ( Base ` G ) |
|
| 2 | mulgnndir.t | |- .x. = ( .g ` G ) |
|
| 3 | mulgnndir.p | |- .+ = ( +g ` G ) |
|
| 4 | mndsgrp | |- ( G e. Mnd -> G e. Smgrp ) |
|
| 5 | 4 | adantr | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> G e. Smgrp ) |
| 6 | 5 | ad2antrr | |- ( ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) /\ N e. NN ) -> G e. Smgrp ) |
| 7 | simplr | |- ( ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) /\ N e. NN ) -> M e. NN ) |
|
| 8 | simpr | |- ( ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) /\ N e. NN ) -> N e. NN ) |
|
| 9 | simpr3 | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> X e. B ) |
|
| 10 | 9 | ad2antrr | |- ( ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) /\ N e. NN ) -> X e. B ) |
| 11 | 1 2 3 | mulgnndir | |- ( ( G e. Smgrp /\ ( M e. NN /\ N e. NN /\ X e. B ) ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) |
| 12 | 6 7 8 10 11 | syl13anc | |- ( ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) /\ N e. NN ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) |
| 13 | simpll | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> G e. Mnd ) |
|
| 14 | simpr1 | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> M e. NN0 ) |
|
| 15 | 14 | adantr | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> M e. NN0 ) |
| 16 | simplr3 | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> X e. B ) |
|
| 17 | 1 2 13 15 16 | mulgnn0cld | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( M .x. X ) e. B ) |
| 18 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 19 | 1 3 18 | mndrid | |- ( ( G e. Mnd /\ ( M .x. X ) e. B ) -> ( ( M .x. X ) .+ ( 0g ` G ) ) = ( M .x. X ) ) |
| 20 | 13 17 19 | syl2anc | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( ( M .x. X ) .+ ( 0g ` G ) ) = ( M .x. X ) ) |
| 21 | simpr | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> N = 0 ) |
|
| 22 | 21 | oveq1d | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( N .x. X ) = ( 0 .x. X ) ) |
| 23 | 1 18 2 | mulg0 | |- ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 24 | 16 23 | syl | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 25 | 22 24 | eqtrd | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( N .x. X ) = ( 0g ` G ) ) |
| 26 | 25 | oveq2d | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( ( M .x. X ) .+ ( N .x. X ) ) = ( ( M .x. X ) .+ ( 0g ` G ) ) ) |
| 27 | 21 | oveq2d | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( M + N ) = ( M + 0 ) ) |
| 28 | 15 | nn0cnd | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> M e. CC ) |
| 29 | 28 | addridd | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( M + 0 ) = M ) |
| 30 | 27 29 | eqtrd | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( M + N ) = M ) |
| 31 | 30 | oveq1d | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( ( M + N ) .x. X ) = ( M .x. X ) ) |
| 32 | 20 26 31 | 3eqtr4rd | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) |
| 33 | 32 | adantlr | |- ( ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) /\ N = 0 ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) |
| 34 | simpr2 | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> N e. NN0 ) |
|
| 35 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 36 | 34 35 | sylib | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( N e. NN \/ N = 0 ) ) |
| 37 | 36 | adantr | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) -> ( N e. NN \/ N = 0 ) ) |
| 38 | 12 33 37 | mpjaodan | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) |
| 39 | simpll | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> G e. Mnd ) |
|
| 40 | simplr2 | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> N e. NN0 ) |
|
| 41 | simplr3 | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> X e. B ) |
|
| 42 | 1 2 39 40 41 | mulgnn0cld | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( N .x. X ) e. B ) |
| 43 | 1 3 18 | mndlid | |- ( ( G e. Mnd /\ ( N .x. X ) e. B ) -> ( ( 0g ` G ) .+ ( N .x. X ) ) = ( N .x. X ) ) |
| 44 | 39 42 43 | syl2anc | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( ( 0g ` G ) .+ ( N .x. X ) ) = ( N .x. X ) ) |
| 45 | simpr | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> M = 0 ) |
|
| 46 | 45 | oveq1d | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( M .x. X ) = ( 0 .x. X ) ) |
| 47 | 41 23 | syl | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 48 | 46 47 | eqtrd | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( M .x. X ) = ( 0g ` G ) ) |
| 49 | 48 | oveq1d | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( ( M .x. X ) .+ ( N .x. X ) ) = ( ( 0g ` G ) .+ ( N .x. X ) ) ) |
| 50 | 45 | oveq1d | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( M + N ) = ( 0 + N ) ) |
| 51 | 40 | nn0cnd | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> N e. CC ) |
| 52 | 51 | addlidd | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( 0 + N ) = N ) |
| 53 | 50 52 | eqtrd | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( M + N ) = N ) |
| 54 | 53 | oveq1d | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( ( M + N ) .x. X ) = ( N .x. X ) ) |
| 55 | 44 49 54 | 3eqtr4rd | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) |
| 56 | elnn0 | |- ( M e. NN0 <-> ( M e. NN \/ M = 0 ) ) |
|
| 57 | 14 56 | sylib | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( M e. NN \/ M = 0 ) ) |
| 58 | 38 55 57 | mpjaodan | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) |