This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring homomorphisms are required to fix 1. (Contributed by Stefan O'Rear, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhm1.o | |- .1. = ( 1r ` R ) |
|
| rhm1.n | |- N = ( 1r ` S ) |
||
| Assertion | rhm1 | |- ( F e. ( R RingHom S ) -> ( F ` .1. ) = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhm1.o | |- .1. = ( 1r ` R ) |
|
| 2 | rhm1.n | |- N = ( 1r ` S ) |
|
| 3 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 4 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 5 | 3 4 | rhmmhm | |- ( F e. ( R RingHom S ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
| 6 | eqid | |- ( 0g ` ( mulGrp ` R ) ) = ( 0g ` ( mulGrp ` R ) ) |
|
| 7 | eqid | |- ( 0g ` ( mulGrp ` S ) ) = ( 0g ` ( mulGrp ` S ) ) |
|
| 8 | 6 7 | mhm0 | |- ( F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) -> ( F ` ( 0g ` ( mulGrp ` R ) ) ) = ( 0g ` ( mulGrp ` S ) ) ) |
| 9 | 5 8 | syl | |- ( F e. ( R RingHom S ) -> ( F ` ( 0g ` ( mulGrp ` R ) ) ) = ( 0g ` ( mulGrp ` S ) ) ) |
| 10 | 3 1 | ringidval | |- .1. = ( 0g ` ( mulGrp ` R ) ) |
| 11 | 10 | fveq2i | |- ( F ` .1. ) = ( F ` ( 0g ` ( mulGrp ` R ) ) ) |
| 12 | 4 2 | ringidval | |- N = ( 0g ` ( mulGrp ` S ) ) |
| 13 | 9 11 12 | 3eqtr4g | |- ( F e. ( R RingHom S ) -> ( F ` .1. ) = N ) |