This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two group sums. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumadd.b | |- B = ( Base ` G ) |
|
| gsumadd.z | |- .0. = ( 0g ` G ) |
||
| gsumadd.p | |- .+ = ( +g ` G ) |
||
| gsumadd.g | |- ( ph -> G e. CMnd ) |
||
| gsumadd.a | |- ( ph -> A e. V ) |
||
| gsumadd.f | |- ( ph -> F : A --> B ) |
||
| gsumadd.h | |- ( ph -> H : A --> B ) |
||
| gsumadd.fn | |- ( ph -> F finSupp .0. ) |
||
| gsumadd.hn | |- ( ph -> H finSupp .0. ) |
||
| Assertion | gsumadd | |- ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumadd.b | |- B = ( Base ` G ) |
|
| 2 | gsumadd.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsumadd.p | |- .+ = ( +g ` G ) |
|
| 4 | gsumadd.g | |- ( ph -> G e. CMnd ) |
|
| 5 | gsumadd.a | |- ( ph -> A e. V ) |
|
| 6 | gsumadd.f | |- ( ph -> F : A --> B ) |
|
| 7 | gsumadd.h | |- ( ph -> H : A --> B ) |
|
| 8 | gsumadd.fn | |- ( ph -> F finSupp .0. ) |
|
| 9 | gsumadd.hn | |- ( ph -> H finSupp .0. ) |
|
| 10 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 11 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
| 12 | 4 11 | syl | |- ( ph -> G e. Mnd ) |
| 13 | 1 | submid | |- ( G e. Mnd -> B e. ( SubMnd ` G ) ) |
| 14 | 12 13 | syl | |- ( ph -> B e. ( SubMnd ` G ) ) |
| 15 | ssid | |- B C_ B |
|
| 16 | 1 10 | cntzcmn | |- ( ( G e. CMnd /\ B C_ B ) -> ( ( Cntz ` G ) ` B ) = B ) |
| 17 | 4 15 16 | sylancl | |- ( ph -> ( ( Cntz ` G ) ` B ) = B ) |
| 18 | 15 17 | sseqtrrid | |- ( ph -> B C_ ( ( Cntz ` G ) ` B ) ) |
| 19 | 1 2 3 10 12 5 8 9 14 18 6 7 | gsumzadd | |- ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |