This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function composition. Similar to second part of Theorem 3H of Enderton p. 47. (Contributed by NM, 9-Oct-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011) (Revised by Stefan O'Rear, 16-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvco2 | |- ( ( G Fn A /\ X e. A ) -> ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaco | |- ( ( F o. G ) " { X } ) = ( F " ( G " { X } ) ) |
|
| 2 | fnsnfv | |- ( ( G Fn A /\ X e. A ) -> { ( G ` X ) } = ( G " { X } ) ) |
|
| 3 | 2 | imaeq2d | |- ( ( G Fn A /\ X e. A ) -> ( F " { ( G ` X ) } ) = ( F " ( G " { X } ) ) ) |
| 4 | 1 3 | eqtr4id | |- ( ( G Fn A /\ X e. A ) -> ( ( F o. G ) " { X } ) = ( F " { ( G ` X ) } ) ) |
| 5 | 4 | eleq2d | |- ( ( G Fn A /\ X e. A ) -> ( x e. ( ( F o. G ) " { X } ) <-> x e. ( F " { ( G ` X ) } ) ) ) |
| 6 | 5 | iotabidv | |- ( ( G Fn A /\ X e. A ) -> ( iota x x e. ( ( F o. G ) " { X } ) ) = ( iota x x e. ( F " { ( G ` X ) } ) ) ) |
| 7 | dffv3 | |- ( ( F o. G ) ` X ) = ( iota x x e. ( ( F o. G ) " { X } ) ) |
|
| 8 | dffv3 | |- ( F ` ( G ` X ) ) = ( iota x x e. ( F " { ( G ` X ) } ) ) |
|
| 9 | 6 7 8 | 3eqtr4g | |- ( ( G Fn A /\ X e. A ) -> ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) ) |