This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulg0.b | |- B = ( Base ` G ) |
|
| mulg0.o | |- .0. = ( 0g ` G ) |
||
| mulg0.t | |- .x. = ( .g ` G ) |
||
| Assertion | mulg0 | |- ( X e. B -> ( 0 .x. X ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulg0.b | |- B = ( Base ` G ) |
|
| 2 | mulg0.o | |- .0. = ( 0g ` G ) |
|
| 3 | mulg0.t | |- .x. = ( .g ` G ) |
|
| 4 | 0z | |- 0 e. ZZ |
|
| 5 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 6 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 7 | eqid | |- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) |
|
| 8 | 1 5 2 6 3 7 | mulgval | |- ( ( 0 e. ZZ /\ X e. B ) -> ( 0 .x. X ) = if ( 0 = 0 , .0. , if ( 0 < 0 , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` 0 ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u 0 ) ) ) ) ) |
| 9 | eqid | |- 0 = 0 |
|
| 10 | 9 | iftruei | |- if ( 0 = 0 , .0. , if ( 0 < 0 , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` 0 ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u 0 ) ) ) ) = .0. |
| 11 | 8 10 | eqtrdi | |- ( ( 0 e. ZZ /\ X e. B ) -> ( 0 .x. X ) = .0. ) |
| 12 | 4 11 | mpan | |- ( X e. B -> ( 0 .x. X ) = .0. ) |