This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the scalar injection into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplascl.p | |- P = ( I mPoly R ) |
|
| mplascl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| mplascl.z | |- .0. = ( 0g ` R ) |
||
| mplascl.b | |- B = ( Base ` R ) |
||
| mplascl.a | |- A = ( algSc ` P ) |
||
| mplascl.i | |- ( ph -> I e. W ) |
||
| mplascl.r | |- ( ph -> R e. Ring ) |
||
| mplascl.x | |- ( ph -> X e. B ) |
||
| Assertion | mplascl | |- ( ph -> ( A ` X ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , X , .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplascl.p | |- P = ( I mPoly R ) |
|
| 2 | mplascl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 3 | mplascl.z | |- .0. = ( 0g ` R ) |
|
| 4 | mplascl.b | |- B = ( Base ` R ) |
|
| 5 | mplascl.a | |- A = ( algSc ` P ) |
|
| 6 | mplascl.i | |- ( ph -> I e. W ) |
|
| 7 | mplascl.r | |- ( ph -> R e. Ring ) |
|
| 8 | mplascl.x | |- ( ph -> X e. B ) |
|
| 9 | 1 6 7 | mplsca | |- ( ph -> R = ( Scalar ` P ) ) |
| 10 | 9 | fveq2d | |- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 11 | 4 10 | eqtrid | |- ( ph -> B = ( Base ` ( Scalar ` P ) ) ) |
| 12 | 8 11 | eleqtrd | |- ( ph -> X e. ( Base ` ( Scalar ` P ) ) ) |
| 13 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 14 | eqid | |- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
|
| 15 | eqid | |- ( .s ` P ) = ( .s ` P ) |
|
| 16 | eqid | |- ( 1r ` P ) = ( 1r ` P ) |
|
| 17 | 5 13 14 15 16 | asclval | |- ( X e. ( Base ` ( Scalar ` P ) ) -> ( A ` X ) = ( X ( .s ` P ) ( 1r ` P ) ) ) |
| 18 | 12 17 | syl | |- ( ph -> ( A ` X ) = ( X ( .s ` P ) ( 1r ` P ) ) ) |
| 19 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 20 | 1 2 3 19 16 6 7 | mpl1 | |- ( ph -> ( 1r ` P ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ) |
| 21 | 20 | oveq2d | |- ( ph -> ( X ( .s ` P ) ( 1r ` P ) ) = ( X ( .s ` P ) ( y e. D |-> if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ) ) |
| 22 | 2 | psrbag0 | |- ( I e. W -> ( I X. { 0 } ) e. D ) |
| 23 | 6 22 | syl | |- ( ph -> ( I X. { 0 } ) e. D ) |
| 24 | 1 15 2 19 3 4 6 7 23 8 | mplmon2 | |- ( ph -> ( X ( .s ` P ) ( y e. D |-> if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , X , .0. ) ) ) |
| 25 | 18 21 24 | 3eqtrd | |- ( ph -> ( A ` X ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , X , .0. ) ) ) |